OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20799–20807

Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses

Mingying Peng, Na Zhang, Lothar Wondraczek, Jianrong Qiu, Zhongmin Yang, and Qinyuan Zhang  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20799-20807 (2011)
http://dx.doi.org/10.1364/OE.19.020799


View Full Text Article

Enhanced HTML    Acrobat PDF (943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of temperature, pump power and excitation wavelength on near-infrared photoluminescence from Bi-doped multi-component germanate glasses are presented. Compared to conventional silica/silicate matrices, the examined material exhibits superior resistance to thermal quenching and less pronounced excited state absorption for pumping at 808 nm. It is shown that by selecting the optimal excitation wavelength, photoemission can be initiated from multiple active centers in parallel, resulting in an emission bandwidth (full width at half maximum) of more than 370 nm. Er3+/Bi co-doping is presented as an effective means to significantly enhance emission intensity around 1.5 μm by suppressing the typical Er3+-related red-to-green upconversion. Besides its relevance for Bi-doped materials, this also indicates a new route towards improving the performance of Er-based optical devices. The mechanism of Er3+→Bi energy transfer is examined in detail. Adjusting the molar ratio between both species provides an effective tool for tuning the emission scheme and further increasing emission bandwidth.

© 2011 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(140.4480) Lasers and laser optics : Optical amplifiers
(160.2540) Materials : Fluorescent and luminescent materials
(160.2750) Materials : Glass and other amorphous materials

ToC Category:
Materials

History
Original Manuscript: July 19, 2011
Manuscript Accepted: August 23, 2011
Published: October 4, 2011

Citation
Mingying Peng, Na Zhang, Lothar Wondraczek, Jianrong Qiu, Zhongmin Yang, and Qinyuan Zhang, "Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses," Opt. Express 19, 20799-20807 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science332(6025), 60–65 (2011). [CrossRef] [PubMed]
  2. M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B25(8), 1380–1386 (2008). [CrossRef]
  3. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004). [CrossRef] [PubMed]
  4. S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3:Ni2+ nanocrystals,” Opt. Express15(9), 5477–5481 (2007). [CrossRef] [PubMed]
  5. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  6. I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009). [CrossRef]
  7. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005). [CrossRef]
  8. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron.44(9), 834–840 (2008). [CrossRef]
  9. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett.91(6), 061919 (2007). [CrossRef]
  10. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett.31(20), 2966–2968 (2006). [CrossRef] [PubMed]
  11. I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centres in germano - aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011). [CrossRef]
  12. M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead - aluminum - germanate glass,” Opt. Mater.32(9), 1028–1034 (2010). [CrossRef]
  13. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express13(18), 6892–6898 (2005). [CrossRef] [PubMed]
  14. M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett.403(4-6), 410–414 (2005). [CrossRef]
  15. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  16. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005). [CrossRef]
  17. G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009). [CrossRef]
  18. H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O,BaO,Y2O3) glasses,” Appl. Phys. Lett.89, 051917 (2006). [CrossRef]
  19. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011). [CrossRef]
  20. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009). [CrossRef]
  21. X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010). [CrossRef]
  22. J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett.92(10), 101121 (2008). [CrossRef]
  23. N. Dai, B. Xu, Z. Jiang, J. Peng, H. Li, H. Luan, L. Yang, and J. Li, “Effect of Yb3+ concentration on the broadband emission intensity and peak wavelength shift in Yb/Bi ions co-doped silica-based glasses,” Opt. Express18(18), 18642–18648 (2010). [CrossRef] [PubMed]
  24. J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, and J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett.34(16), 2486–2488 (2009). [CrossRef] [PubMed]
  25. B. Zhou, H. Lin, B. Chen, and E. Y. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express19(7), 6514–6523 (2011). [CrossRef] [PubMed]
  26. Y. Kuwada, Y. Fujimoto, and M. Nakatsuka, “Ultrawideband light emission from bismuth and erbium doped silica,” Jpn. J. Appl. Phys.46(4A), 1531–1532 (2007). [CrossRef]
  27. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett.88(19), 191912 (2006). [CrossRef]
  28. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009). [CrossRef] [PubMed]
  29. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express18(12), 12852–12863 (2010). [CrossRef] [PubMed]
  30. C. Xin, K. Lu, and Z. Yagin, “Short-range structure of Na2O-Al2O3-GeO2 glasses by EXAFS analysis,” J. Non-Cryst. Solids112(1-3), 96–100 (1989). [CrossRef]
  31. M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express16(25), 21032–21038 (2008). [CrossRef] [PubMed]
  32. M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria – alumina - silica glass,” Opt. Mater.32(2), 368–373 (2009). [CrossRef]
  33. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011). [CrossRef] [PubMed]
  34. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett.36(2), 109–111 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited