OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20808–20816

Out-of-plane resonances in terahertz photonic crystal slabs modulated by optical pumping

Yulei Shi, Qing-li Zhou, Wei Liu, and Cunlin Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20808-20816 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (948 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes detailed optical-pump-terahertz-probe studies of two-dimensional photonic crystal slabs for propagation perpendicular to the slabs. When the slabs are excited by an 800 nm pump pulse and the effect of shielding by photocarriers is removed, we find that the decaying tail in the transmitted terahertz radiation is strikingly enhanced. The photocarriers weaken guided resonances, but they also greatly enhance the excitation efficiency of guided resonances and the ability of the guided resonances to transfer energy back to the radiation field. This increases the resonance-assisted contribution to transmitted field. The photoinduced resonant extremes agree well with the Fano model.

© 2011 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(260.5740) Physical optics : Resonance
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: July 22, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 19, 2011
Published: October 4, 2011

Yulei Shi, Qing-li Zhou, Wei Liu, and Cunlin Zhang, "Out-of-plane resonances in terahertz photonic crystal slabs modulated by optical pumping," Opt. Express 19, 20808-20816 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999). [CrossRef]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  3. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  4. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003). [CrossRef] [PubMed]
  5. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78(5), 563–565 (2001). [CrossRef]
  6. W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007). [CrossRef] [PubMed]
  7. Z. Jian and D. M. Mittleman, “Broadband group-velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006). [CrossRef]
  8. Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005). [CrossRef]
  9. J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. U. Jepsen, S. R. Keiding, C. B. So̸rensen, and P. E. Lindelof, “Ultrafast local field dynamics in photoconductive THz antennas,” Appl. Phys. Lett. 62(11), 1265–1267 (1993). [CrossRef]
  10. B. Hu, E. de Souza, W. Knox, J. Cunningham, M. Nuss, A. Kuznetsov, and S. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74(9), 1689–1692 (1995). [CrossRef] [PubMed]
  11. J. Lesueur, L. Dumoulin, and P. Nedellec, “Metal-insulator transition in quench-condensed AlxGe1-x: “scaling” and tunneling experiments,” Phys. Rev. Lett. 55(21), 2355–2358 (1985). [CrossRef]
  12. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62(23), 15764–15777 (2000). [CrossRef]
  13. T. Dekorsy, H. Auer, C. Waschke, H. J. Bakker, H. G. Roskos, H. Kurz, V. Wagner, and P. Grosse, “Emission of submillimeter electromagnetic waves by coherent phonons,” Phys. Rev. Lett. 74(5), 738–741 (1995). [CrossRef] [PubMed]
  14. Y. Shi, Q. L. Zhou, C. Zhang, and B. Jin, “Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 93(12), 121115 (2008). [CrossRef]
  15. A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from ‹110› zinc‐blende crystals,” Appl. Phys. Lett. 64(11), 1324–1326 (1994). [CrossRef]
  16. Q. Wu, M. Litz, and X. C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996). [CrossRef]
  17. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70(11), 1438–1440 (1997). [CrossRef]
  18. “GaAs band structure and carrier concentration,” http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/bandstr.html .
  19. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited