OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20833–20848

High precision and continuous optical transport using a standing wave optical line trap

Vassili Demergis and Ernst-Ludwig Florin  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20833-20848 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1663 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce the Standing Wave Optical Line Trap (SWOLT) as a novel tool for precise optical manipulation and long-range transport of nano-scale objects at low laser power. We show that positioning and transport along the trap can be achieved by controlling the lateral component of the scattering force while the confinement of the particles by the gradient force remains unaffected. Multiple gold nanoparticles with a diameter of 100nm were trapped at a power density 3 times smaller than previously reported while their transverse fluctuations remained sufficiently small (±36nm) to maintain the order of the particles. The SWOLT opens new doors for sorting, mixing, and assembly of synthetic and biological nanoparticles.

© 2011 OSA

OCIS Codes
(000.2170) General : Equipment and techniques
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: August 1, 2011
Revised Manuscript: September 8, 2011
Manuscript Accepted: September 8, 2011
Published: October 5, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Vassili Demergis and Ernst-Ludwig Florin, "High precision and continuous optical transport using a standing wave optical line trap," Opt. Express 19, 20833-20848 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef] [PubMed]
  3. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Bioph. Biom. 23, 247–285 (1994). [CrossRef]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]
  5. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004). [CrossRef]
  6. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008). [CrossRef]
  7. A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008). [CrossRef]
  8. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 1–4 (2002). [CrossRef]
  9. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002). [CrossRef] [PubMed]
  10. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003). [CrossRef] [PubMed]
  11. J. Glückstad, “Sorting particles with light,” Nature Materials 3, 9–10 (2004). [CrossRef] [PubMed]
  12. M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 1–10 (2004). [CrossRef]
  13. Y. Roichman, V. Wong, and D. G. Grier, “Colloidal transport through optical tweezer arrays,” Phys. Rev. E 75, 1–4 (2007). [CrossRef]
  14. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Mashuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991). [CrossRef] [PubMed]
  15. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical thermal ratchet,” Phys. Rev. Lett. 74, 1504–1507 (1995). [CrossRef] [PubMed]
  16. L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a Brownian particle,” Phys. Rev. E 51, 5239–5250 (1995). [CrossRef]
  17. C. Mio, T. Gong, A. Terray, and D. W. M. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000). [CrossRef]
  18. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003). [CrossRef] [PubMed]
  19. B. Liesfeld, R. Nambiar, and J. C. Meiners, “Particle transport in asymmetric scanning-line optical tweezers,” Phys. Rev. E 68, 1–6 (2003). [CrossRef]
  20. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12, 4390–4398 (2004). [CrossRef] [PubMed]
  21. R. Nambiar, A. Gajraj, and J.-C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J 87, 1972–80 (2004). [CrossRef] [PubMed]
  22. S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B 81, 159–162 (2005). [CrossRef]
  23. F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006). [CrossRef]
  24. M. Khan, A. K. Sood, S. K. Mohanty, P. K. Gupta, G. V. Arabale, K. Vijaymohanan, and C. N. R. Raol, “Optical trapping and transportation of carbon nanotubes made easy by decorating with palladium,” Opt. Express 14, 424–429 (2006). [CrossRef] [PubMed]
  25. Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett. 31, 1675–1677 (2006). [CrossRef] [PubMed]
  26. A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011). [CrossRef] [PubMed]
  27. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28, 657–659 (2003). [CrossRef] [PubMed]
  28. T. Čižmár, V. Garcéz-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt based on Bessel beams,” Proc. SPIE 5930, 231–237 (2005).
  29. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005). [CrossRef]
  30. T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006). [CrossRef]
  31. M. Šiler, T. Čižmár, M. Šerý, and P. Zemánek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84, 157–165 (2006). [CrossRef]
  32. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006). [CrossRef]
  33. T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006). [CrossRef]
  34. M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Delivery of multiparticle chains by an optical conveyor belt,” Proc. SPIE7138, 713822 (2008). [CrossRef]
  35. M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New J. Phys. 10, 113010 (2008). [CrossRef]
  36. T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011). [CrossRef]
  37. P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273–285 (1998). [CrossRef]
  38. P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448–50 (1999). [CrossRef]
  39. P. Jákl, A. Jonáš, E.-L. Florin, and P. Zemánek, “Comparison of the single beam and the standing wave trap stiffnesses,” Proc. SPIE 4356, 347–352 (2001). [CrossRef]
  40. A. Jonáš, P. Zemánek, and E.-L. Florin, “Single-beam trapping in front of reflective surfaces,” Opt. Lett. 26, 1466–8 (2001). [CrossRef]
  41. P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002). [CrossRef]
  42. P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003). [CrossRef]
  43. H. Fujiwara, H. Takasaki, J. Hotta, and K. Sasaki, “Observation of the discrete transition of optically trapped particle position in the vicinity of an interface,” Appl. Phys. Lett. 84, 13 (2004). [CrossRef]
  44. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009). [CrossRef]
  45. M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009). [CrossRef] [PubMed]
  46. R. Bowman, A. Jesacher, G. Thalhammer, G. Gibson, M. Ritsch-Marte, and M. Padgett, “Position clamping in a holographic counterpropagating optical trap,” Opt. Express 19, 9908–9914 (2011). [CrossRef] [PubMed]
  47. W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence microscope.” Nat. Protoc. 23226–3238 (2007). [CrossRef] [PubMed]
  48. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano. Lett. 5, 1937–1942 (2005). [CrossRef] [PubMed]
  49. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010). [CrossRef] [PubMed]
  50. S.-U. Hwang and Y.-G. Lee, “Simulation of an oil immersion objective lens: a simplified ray-optics model considering Abbe’s sine condition,” Opt. Express 16, 21170–83 (2008). [CrossRef] [PubMed]
  51. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall Inc., 1965).
  52. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989). [CrossRef] [PubMed]
  53. S. K. Mohanty, J. T. Andrews, and P. K. Gupta, “Optical binding between dielectric particles,” Opt. Express 12, 2749–2756 (2004). [CrossRef]
  54. K. Dholakia and P. Zemánek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010). [CrossRef]
  55. T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010). [CrossRef]
  56. O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3964 KB)     
» Media 2: MOV (3974 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited