OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20876–20885

High speed silicon electro-optical modulators enhanced via slow light propagation

A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F.Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20876-20885 (2011)
http://dx.doi.org/10.1364/OE.19.020876


View Full Text Article

Enhanced HTML    Acrobat PDF (3275 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

While current optical communication networks efficiently carry and process huge amounts of digital information over large and medium distances, silicon photonics technology has the capacity to meet the ceaselessly increasing demand for bandwidth via energy efficient, inexpensive and mass producible short range optical interconnects. In this context, handling electrical-to-optical data conversion through compact and high speed electro-optical modulators is of paramount importance. To tackle these challenges, we combine the attractive properties of slow light propagation in a nanostructured periodic waveguide together with a high speed semiconductor pn diode, and demonstrate a highly efficient and mass manufacturable 500 µm-long silicon electro-optical device, exhibiting error free modulation up to 20 Gbit/s. These results, supported by modulation rate capabilities reaching 40 Gbit/s, pave a foreseeable way towards dense, low power and ultra fast integrated networks-on-chip for future chip-scale high performance computing systems.

© 2011 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.4110) Optoelectronics : Modulators

ToC Category:
Optoelectronics

History
Original Manuscript: June 22, 2011
Revised Manuscript: July 22, 2011
Manuscript Accepted: July 25, 2011
Published: October 3, 2011

Citation
A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F.Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí, "High speed silicon electro-optical modulators enhanced via slow light propagation," Opt. Express 19, 20876-20885 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20876


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011). [CrossRef]
  2. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  3. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]
  4. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]
  5. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  6. R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  7. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  8. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005). [CrossRef] [PubMed]
  9. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  10. S. Manipatruni, X. Qianfan, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator,” in Lasers and Electro-Optics Society,2007. LEOS 2007. The 20th Annual Meeting of the IEEE, 2007), 537–538.
  11. L. Liao, A. Liu, J. Basak, H. Nguyen, M. Paniccia, D. Rubin, Y. Chetrit, R. Cohen, and N. Izhaky, “40 Gbit/s silicon optical modulator for high speed applications,” Electron. Lett. 43(22), 1196 (2007). [CrossRef]
  12. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009). [CrossRef] [PubMed]
  13. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35(19), 3246–3248 (2010). [CrossRef] [PubMed]
  14. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J. M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  15. H.-W. Chen, J. D. Peters, and J. E. Bowers, “Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp,” Opt. Express 19(2), 1455–1460 (2011). [CrossRef] [PubMed]
  16. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  17. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  18. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  19. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004). [CrossRef] [PubMed]
  20. M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006). [CrossRef] [PubMed]
  21. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  22. H. Gersen, T. J. Karle, R. J. P. Engelsen, W. Boa, J. P. Korterik, N. F. Hulst, T. F. Krauss, and L. Kuipers, “Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides,” Phys. Rev. Lett. 94(7), 073901–073904 (2005). [CrossRef] [PubMed]
  23. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  24. G. von Freymann, S. John, S. Wong, V. Kitaev, and G. A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” Appl. Phys. Lett. 86(5), 053108–053103 (2005). [CrossRef]
  25. H. F. Taylor, “Enhanced Electrooptic Modulation Efficiency Utilizing Slow-Wave Optical Propagation,” J. Lightwave Technol. 17(10), 1875–1883 (1999). [CrossRef]
  26. M. Soljačić, S. G. Johnson, F. Shanhui, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002). [CrossRef]
  27. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005). [CrossRef]
  28. L. Gu, W. Jiang, X. chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071101–071103 (2007).
  29. X. Chen, Y.-S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34(5), 602–604 (2009). [CrossRef] [PubMed]
  30. L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals,” IEEE Photon. J. 2(3), 404–414 (2010). [CrossRef]
  31. A. Brimont, P. Sanchis, and J. Martí, “Strong electro-optical modulation enhancement in a slow wave corrugated waveguide,” Opt. Express 17(11), 9204–9211 (2009). [CrossRef] [PubMed]
  32. D. J. Thomson, F. Y. Gardes, G. T. Reed, F. Milesi, and J. M. Fedeli, “High speed silicon optical modulator with self aligned fabrication process,” Opt. Express 18(18), 19064–19069 (2010). [CrossRef] [PubMed]
  33. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005). [CrossRef]
  34. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15(20), 13129–13138 (2007). [CrossRef] [PubMed]
  35. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005). [CrossRef] [PubMed]
  36. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006). [CrossRef] [PubMed]
  37. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32(20), 2981–2983 (2007). [CrossRef] [PubMed]
  38. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007). [CrossRef] [PubMed]
  39. A. Brimont, J. V. Galán, J. M. Escalante, J. Martí, and P. Sanchis, “Group-index engineering in silicon corrugated waveguides,” Opt. Lett. 35(16), 2708–2710 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited