OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20960–20983

Influence of polarimetric satellite data measured in the visible region on aerosol detection and on the performance of atmospheric correction procedure over open ocean waters

Tristan Harmel and Malik Chami  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 20960-20983 (2011)
http://dx.doi.org/10.1364/OE.19.020960


View Full Text Article

Enhanced HTML    Acrobat PDF (3112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An original atmospheric correction algorithm, so-called multi-directionality and POLarization-based Atmospheric Correction (POLAC), is described. This algorithm is based on the characteristics of the multidirectional and polarimetric data of the satellite PARASOL (CNES). POLAC algorithm is used to assess the influence of the polarimetric information in the visible bands on the retrieval of the aerosol properties and the water-leaving radiance over open ocean waters. This study points out that the use of the polarized signal significantly improves the aerosol type determination. The use of the polarized information at one visible wavelength only, namely 490 nm, allows providing estimates of the Angstrom exponent of aerosol optical depth with an uncertainty lower than 4%. Based on PARASOL observations, it is shown that the detection of the fine aerosols is improved when exploiting polarization data. The atmospheric component of the satellite signal is then better modeled, thus improving de facto the water-leaving radiance estimation.

© 2011 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(260.5430) Physical optics : Polarization
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 9, 2011
Revised Manuscript: September 27, 2011
Manuscript Accepted: September 27, 2011
Published: October 6, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Tristan Harmel and Malik Chami, "Influence of polarimetric satellite data measured in the visible region on aerosol detection and on the performance of atmospheric correction procedure over open ocean waters," Opt. Express 19, 20960-20983 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-20960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep Sea Res. Part I Oceanogr. Res. Pap.52(11), 1989–2004 (2005). [CrossRef]
  2. M. Doron, M. Babin, A. Mangin, and O. Hembise, “Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance,” J. Geophys. Res.- Oceans112(C6), C06003 (2007). [CrossRef]
  3. IOCCG, Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology, T. Platt, N. Hoepffner, V. Stuart, and C. Brown, eds, Reports of the International Ocean-Colour Coordinating Group, 7 (IOCCG, 2008).
  4. M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier, and E. S. Boss, “Climate-driven trends in contemporary ocean productivity,” Nature444(7120), 752–755 (2006). [CrossRef] [PubMed]
  5. J. J. Polovina, E. A. Howell, and M. Abecassis, “Ocean's least productive waters are expanding,” Geophys. Res. Lett.35(3), L03618 (2008). [CrossRef]
  6. E. Martinez, D. Antoine, F. D’Ortenzio, and B. Gentili, “Climate-driven basin-scale decadal oscillations of oceanic phytoplankton,” Science326(5957), 1253–1256 (2009). [CrossRef] [PubMed]
  7. IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products M. Wang, D. Antoine, P. Y. Deschamps, R. Frouin, H. Fukushima, H. R. Gordon, A. Morel, J. M. Nicolas, and V. Stuart, eds, Reports of the International Ocean-Colour Coordinating Group, No. 10 (IOCCG, 2010).
  8. M. D. King, Y. J. Kaufman, D. Tanre, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bull. Am. Meteorol. Soc.80, 2229–2259 (1999).
  9. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt.49(29), 5545–5560 (2010). [CrossRef] [PubMed]
  10. D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens.20(9), 1875–1916 (1999). [CrossRef]
  11. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res.102(D14), 17081–17106 (1997). [CrossRef]
  12. H. Fukushima, A. Higurashi, Y. Mitomi, T. Nakajima, T. Noguchi, T. Tanaka, and M. Toratani, “Correction of atmospheric effects on ADEOS/OCTS ocean color data: algorithm description and evaluation of its performance,” J. Oceanogr.54(5), 417–430 (1998). [CrossRef]
  13. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with seawifs: a preliminary algorithm,” Appl. Opt.33(3), 443–452 (1994). [CrossRef] [PubMed]
  14. F. Mélin, M. Clerici, G. Zibordi, B. N. Holben, and A. Smirnov, “Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data,” Remote Sens. Environ.114(2), 230–250 (2010). [CrossRef]
  15. F. Mélin and G. Zibordi, “Vicarious calibration of satellite ocean color sensors at two coastal sites,” Appl. Opt.49(5), 798–810 (2010). [CrossRef] [PubMed]
  16. D. Antoine, F. d'Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project),” J. Geophys. Res.113(C7), C07013 (2008). [CrossRef]
  17. M. Chami, “Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance,” J. Geophys. Res.- Oceans112(C5), C05026 (2007). [CrossRef]
  18. T. Harmel and M. Chami, “Invariance of polarized reflectance measured at the top of atmosphere by PARASOL satellite instrument in the visible range with marine constituents in open ocean waters,” Opt. Express16(9), 6064–6080 (2008). [CrossRef] [PubMed]
  19. J. Chowdhary, B. Cairns, and L. D. Travis, “Case studies of aerosol Retrievals over the ocean from multiangle, multispectral photopolarimetric remote sensing data,” J. Atmos. Sci.59(3), 383–397 (2002). [CrossRef]
  20. M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using measurements of reflected sunlight: Effect of instrumental errors and aerosol absorption,” J. Geophys. Res.- Atmos.102(D12), 13543–13553 (1997). [CrossRef]
  21. M. I. Mishchenko and L. D. Travis, “Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight,” J. Geophys. Res.- Atmos.102(D14), 16989–17013 (1997). [CrossRef]
  22. V. Zubko, Y. J. Kaufman, R. I. Burg, and J. V. Martins, “Principal component analysis of remote sensing of aerosols over oceans,” IEEE Trans. Geosci. Remote Sensing45(3), 730–745 (2007). [CrossRef]
  23. M. I. Mishchenko, I. V. Geogdzhayev, B. Cairns, B. E. Carlson, J. Chowdhary, A. A. Lacis, L. Liu, W. B. Rossow, and L. D. Travis, “Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective,” J. Quant. Spectrosc. Radiat. Transf.106(1-3), 325–347 (2007). [CrossRef]
  24. P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze, “The polder mission - instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sensing32(3), 598–615 (1994). [CrossRef]
  25. J. L. Deuzé, F. M. Breon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanre, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res.- Atmos.106(D5), 4913–4926 (2001). [CrossRef]
  26. M. Herman, J. L. Deuze, A. Marchand, B. Roger, and P. Lallart, “Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model,” J. Geophys. Res.- Atmos.110(D10), D10S02 (2005). [CrossRef]
  27. O. Hagolle, P. Goloub, P. Y. Deschamps, H. Cosnefroy, X. Briottet, T. Bailleul, J. M. Nicolas, F. Parol, B. Lafrance, and M. Herman, “Results of POLDER in-flight calibration,” IEEE Trans. Geosci. Remote Sensing37(3), 1550–1566 (1999). [CrossRef]
  28. B. Fougnie, G. Bracco, B. Lafrance, C. Ruffel, O. Hagolle, and C. Tinel, “PARASOL in-flight calibration and performance,” Appl. Opt.46(22), 5435–5451 (2007). [CrossRef] [PubMed]
  29. C. Cox and W. Munk, Slopes of the Sea Surface Deduced from Photographs of Sun Glitter, C. Cox and W. Munk, eds. (Scripps Institution of Oceanography, 1956).
  30. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc.3, 233–259 (1852).
  31. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple scattering of light by particles: Radiative transfer and coherent backscattering (Cambridge Univ. Press, New York, 2006).
  32. M. I. Mishchenko, “The 3*3 approximation in the CP representation of the Stokes vector in polarized-radiation transport in planetary atmospheres,” Kinematics Phys. Celestial Bodies3, 29–34 (1987).
  33. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak Pub., Hampton, Va., USA, 1988).
  34. J. E. Hansen, “Multiple scattering of polarized light in planetary atmospheres part II. Sunlight reflected by terrestrial water clouds,” J. Atmos. Sci.28(8), 1400–1426 (1971). [CrossRef]
  35. Y. Kawata, “Circular polarization of sunlight reflected by planetary atmospheres,” Icarus33(1), 217–232 (1978). [CrossRef]
  36. S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm., “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance,” Appl. Opt.45(26), 6762–6774 (2006). [CrossRef] [PubMed]
  37. J. W. Hovenier, “A unified treatment of polarized light emerging from a homogeneous plane-parallel atmosphere,” Astron. Astrophys.183, 363–370 (1987).
  38. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  39. M. Chami, R. Santer, and E. Dilligeard, “Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing,” Appl. Opt.40(15), 2398–2416 (2001). [CrossRef] [PubMed]
  40. J. L. Deuzé, M. Herman, and R. Santer, “Fourier-Series Expansion Of The Transfer Equation In The Atmosphere Ocean System,” J. Quant. Spectrosc. Radiat. Transf.41(6), 483–494 (1989). [CrossRef]
  41. K. Ding and H. R. Gordon, “Atmospheric correction of ocean-color sensors: effects of the Earth’s curvature,” Appl. Opt.33(30), 7096–7106 (1994). [CrossRef] [PubMed]
  42. C. N. Adams and G. W. Kattawar, “Radiative transfer in spherical shell atmospheres: I. Rayleigh scattering,” Icarus35(1), 139–151 (1978). [CrossRef]
  43. M. Wang, “Light scattering from the spherical-shell atmosphere: earth curvature effects measured by SeaWiFS,” Eos Trans. AGU84(48), 529–534 (2003). [CrossRef]
  44. Y. Kawata, A. Yamazaki, T. Kusaka, and S. Ueno, “Aerosol retrieval from airborne Polder data by multiple scattering model,” presented at IGARSS, Surface and Atmospheric Remote Sensing, (1994), 1895–1897.
  45. J. W. Strutt, “On the light from the sky, its polarisation and colour. II,” Philos. Mag.41, 274–279 (1871).
  46. J. L. Deuze, “Etude de la polarisation du rayonnement par les milieux diffusants: application à la polarisation localisée de Vénus,” PhD dissertation (Université des sciences et technique de Lille, France, 1974).
  47. IOCCG, Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications, Z. P. Lee, ed., Reports of the International Ocean Colour Coordinating Group No. 5, (2006).
  48. E. F. Vermote and A. Vermeulen,Atmospheric Correction Algorithm: Spectral Reflectances (MOD09), E. F. Vermote and A. Vermeulen, eds., 4.0 (US National Aeronautics and Space Administration, 1999).
  49. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  50. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997). [CrossRef] [PubMed]
  51. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res.103(C13), 31033–31044 (1998). [CrossRef]
  52. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: A reexamination,” Limnol. Oceanogr.43(5), 847–858 (1998). [CrossRef]
  53. H. Bader, “Hyperbolic distribution of particle sizes,” J. Geophys. Res.75(15), 2822–2830 (1970). [CrossRef]
  54. A. Morel, “Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?” J. Geophys. Res.114(C1), C01016 (2009). [CrossRef]
  55. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr.61(1), 27–56 (2004). [CrossRef]
  56. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt.40(18), 2929–2945 (2001). [CrossRef] [PubMed]
  57. K. J. Voss and E. S. Fry, “Measurement of the Mueller Matrix for Ocean Water,” Appl. Opt.23(23), 4427–4439 (1984). [CrossRef] [PubMed]
  58. K. T. Whitby, “The physical characteristics of sulfur aerosols,” Atmos. Environ.12(1-3), 135–159 (1978). [CrossRef]
  59. C. Junge, “The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere,” J. Atmos. Sci.12, 13–25 (1955).
  60. C. E. Junge, Air Chemistry and Radioactivity, International Geophysics (Academic, New York, 1963).
  61. Y. J. Kaufman, A. Smirnov, B. N. Holben, and O. Dubovik, “Baseline maritime aerosol: methodology to derive the optical thickness and scattering properties,” Geophys. Res. Lett.28(17), 3251–3256 (2001). [CrossRef]
  62. P. N. Francis, P. Hignett, and J. P. Taylor, “Aircraft observations and modeling of sky radiance distributions from aerosol during TARFOX,” J. Geophys. Res.104(D2), 2309–2319 (1999). [CrossRef]
  63. O. Dubovik, A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements,” J. Geophys. Res.105(D8), 9791–9806 (2000). [CrossRef]
  64. J. L. Deuzé, P. Goloub, M. Herman, A. Marchand, G. Perry, S. Susana, and D. Tanre, “Estimate of the aerosol properties over the ocean with POLDER,” J. Geophys. Res.- Atmos.105(D12), 15329–15346 (2000). [CrossRef]
  65. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt.43(5), 1180–1195 (2004). [CrossRef] [PubMed]
  66. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci.59(3), 590–608 (2002). [CrossRef]
  67. M. I. Mishchenko, L. D. Travis, R. A. Kahn, and R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res.102(D14), 16831–16847 (1997). [CrossRef]
  68. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, 2000), p. 690.
  69. H. Volten, O. Munoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res.- Atmos.106(D15), 17375–17401 (2001). [CrossRef]
  70. M. Wang and H. R. Gordon, “Radiance reflected from the ocean-atmosphere system: synthesis from individual components of the aerosol size distribution,” Appl. Opt.33(30), 7088–7095 (1994). [CrossRef] [PubMed]
  71. D. Tanré, Y. J. Kaufman, M. Herman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” J. Geophys. Res.- Atmos.102(D14), 16971–16988 (1997). [CrossRef]
  72. R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS, R. C. Levy, L. A. Remer, D. Tanré, S. Mattoo, and Y. J. Kaufman, eds., Collections 005 and 051: Revision 2 (2009).
  73. A. Ångström, “On the Atmospheric Transmission of Sun Radiation and on Dust in the Air,” Geogr. Ann.11, 156–166 (1929). [CrossRef]
  74. G. L. Schuster, O. Dubovik, and B. N. Holben, “Angstrom exponent and bimodal aerosol size distributions,” J. Geophys. Res.111, D07207 (2006). [CrossRef] [PubMed]
  75. A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, “Optical Properties of Atmospheric Aerosol in Maritime Environments,” J. Atmos. Sci.59(3), 501–523 (2002). [CrossRef]
  76. T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O'Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res.104(D24), 31333–31349 (1999). [CrossRef]
  77. M. D. King and D. M. Byrne, “A Method for Inferring Total Ozone Content from the Spectral Variation of Total Optical Depth Obtained with a Solar Radiometer,” J. Atmos. Sci.33(11), 2242–2251 (1976). [CrossRef]
  78. N. T. O'Neill, T. F. Eck, A. Smirnov, B. N. Holben, and S. Thulasiraman, “Spectral discrimination of coarse and fine mode optical depth,” J. Geophys. Res.108(D17), 4559 (2003). [CrossRef]
  79. E. Boesche, P. Stammes, T. Ruhtz, R. Preusker, and J. Fischer, “Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements,” Appl. Opt.45(34), 8790–8805 (2006). [CrossRef] [PubMed]
  80. O. Hagolle, A. Guerry, L. Cunin, B. Millet, J. Perbos, J. M. Laherrere, T. Bret-Dibat, and L. Poutier, “POLDER level 1 processing algorithms,” Proc. SPIE2758,308–319 (1996).
  81. K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res.105(C3), 6493–6499 (2000). [CrossRef]
  82. R. Frouin, M. Schwindling, and P.-Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications,” J. Geophys. Res.101(C6), 14,361–314,371 (1996). [CrossRef]
  83. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt.40(36), 6701–6718 (2001). [CrossRef] [PubMed]
  84. T. Harmel, “Apport des mesures directionnelles et polarisées aux corrections atmosphériques au-dessus des océans ouverts. Application à la mission PARASOL,” Thèse (l'Université P. & M. Curie, Paris, 2009).
  85. IOCCG, Minimum requirements for an operational, ocean-colour sensor for the open ocean, A. Morel, ed., Reports of the International Ocean Colour Coordinating Group No. 1 (IOCCG, 1997).
  86. J. E. O'Reilly, S. Maritorena, G. Mitchell, D. A. Siegel, K. L. Carder, D. L. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for Seawifs,” J. Geophys. Res.103(C11), 24937–24953 (1998). [CrossRef]
  87. E. Bosc, A. Bricaud, and D. Antoine, “Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations,” Global Biogeochem. Cycles18(1), GB1005 (2004). [CrossRef]
  88. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ.66(1), 1–16 (1998). [CrossRef]
  89. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res.102(D14), 17209–17217 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited