OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20984–20990

High density spectral beam combination with spatial chirp precompensation

Eric C. Cheung, James G. Ho, Timothy S. McComb, and Stephen Palese  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20984-20990 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for spectral combination of lasers with extremely high spectral density is introduced, enabling greater than 80% and theoretically approaching 100% spectral density utilization with no degradation in beam quality. Experiments demonstrating the utility of our method are described, cumulating in a demonstration of a compact, packaged laser with photonic-crystal-fiber-rod amplifiers at 0.5-MW peak power and 0.15-nm wavelength spacing. Our method is potentially scalable to many 100’s of channels within the gain bandwidth of high average power or peak power rare earth doped fiber lasers at any wavelength in a compact footprint and uses only reflective optics and gratings.

© 2011 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 10, 2011
Revised Manuscript: September 6, 2011
Manuscript Accepted: September 14, 2011
Published: October 6, 2011

Eric C. Cheung, James G. Ho, Timothy S. McComb, and Stephen Palese, "High density spectral beam combination with spatial chirp precompensation," Opt. Express 19, 20984-20990 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Smirnov, L. Glebov, D. Drachenberg, A. Jain, I. Divliansky, G. Venus, and C. Spiegelberg, “Phase Locking and Spectral Combining of Fiber Lasers by Volume Bragg Gratings,” in Fiber Laser Applications, OSA Technical Digest, paper FWB2 (2011).
  2. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers,” J. Opt. Soc. Am. B24(8), 1707–1715 (2007). [CrossRef]
  3. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
  4. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express17(3), 1178–1183 (2009). [CrossRef] [PubMed]
  5. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron.13(3), 487–497 (2007).
  6. P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron.15(2), 337–343 (2009).
  7. F. Di Teodoro, M. K. Hemmat, J. Morais, and E. C. Cheung, “High peak power operation of a 100μm-core, Yb-doped rod-type photonic crystal fiber amplifier,” Fiber Lasers VII: Technology, Systems, and Applications, Proc. of SPIE Vol. 7580, 758006 (2010).
  8. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A14(5), 1124–1136 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited