OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 20991–21002

Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center

Jiahua Li and Rong Yu  »View Author Affiliations

Optics Express, Vol. 19, Issue 21, pp. 20991-21002 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (813 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the scattering properties of a single surface plasmon in metal nanowire coupled to a nitrogen-vacancy (NV) center in diamond nanocrystal under optical excitation. We demonstrate that, by spatially modulating a classical control beam, alternating regions of high reflection and absorption as well as high transmission and absorption of a single plasmon can be created in the left- and right-going directions that act as a kind of scattering grating. Such approach to induce grating gets out the well investigating region in which the weak interactions between single atoms and light is often used. The proposal may be used for chip-integrated grating, switcher and multi-channel drop filter.

© 2011 OSA

OCIS Codes
(230.4320) Optical devices : Nonlinear optical devices
(240.6680) Optics at surfaces : Surface plasmons
(270.1670) Quantum optics : Coherent optical effects
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: August 15, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 20, 2011
Published: October 6, 2011

Jiahua Li and Rong Yu, "Single-plasmon scattering grating using nanowire surface plasmon coupled to nanodiamond nitrogen-vacancy center," Opt. Express 19, 20991-21002 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998) and references therein. [CrossRef]
  2. J. Wen, S. Du, H. Chen, and M. Xiao, “Electromagnetically induced Talbot effect,” Appl. Phys. Lett. 98, 081108 (2011). [CrossRef]
  3. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999). [CrossRef]
  4. A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002). [CrossRef] [PubMed]
  5. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature (London) 426, 638–641 (2003). [CrossRef]
  6. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005). [CrossRef] [PubMed]
  7. J. W. Gao, J. H. Wu, N. Ba, C. L. Cui, and X. X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010). [CrossRef]
  8. J. H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103, 133601 (2009). [CrossRef] [PubMed]
  9. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London) 450, 402–406 (2007). [CrossRef]
  10. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007). [CrossRef]
  11. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007). [CrossRef] [PubMed]
  12. G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33, 2212–2214 (2008). [CrossRef] [PubMed]
  13. A. Gonzalez-Tudela, F. J. Rodríguez, L. Quiroga, and C. Tejedor, “Dissipative dynamics of a solid-state qubit coupled to surface plasmons: From non-Markov to Markov regimes,” Phys. Rev. B 82, 115334 (2010). [CrossRef]
  14. D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, “Quantum emitters coupled to surface plasmons of a nanowire: A Greens function approach,” Phys. Rev. B 82, 075427 (2010). [CrossRef]
  15. W. Chen, G. Y. Chen, and Y. N. Chen, “Coherent transport of nanowire surface plasmons coupled to quantum dots,” Opt. Express 18, 10360–10368 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-10-10360 . [CrossRef]
  16. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006). [CrossRef] [PubMed]
  17. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76, 035420 (2007). [CrossRef]
  18. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011). [CrossRef] [PubMed]
  19. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004). [CrossRef] [PubMed]
  20. R. J. Epstein, F. M. Mendoza, Y. K. Kato, and D. D. Awschalom, “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Nat. Phys. 1, 94–98 (2005). [CrossRef]
  21. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006). [CrossRef]
  22. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007). [CrossRef]
  23. R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, “Coherent dynamics of a single spin interacting with an adjustable spin bath,” Science 320,, 352–355 (2008). [CrossRef] [PubMed]
  24. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006). [CrossRef] [PubMed]
  25. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009). [CrossRef] [PubMed]
  26. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature (London) 466, 730–734 (2010). [CrossRef]
  27. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006). [CrossRef]
  28. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A.D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006). [CrossRef]
  29. P. Tamarat, N. B. Manson, J. P. Harrison, R. L. McMurtrie, A. Nizovtsev, C. Santori, R. G. Beausoleil, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond,” N. J. Phys. 10, 045004 (2008). [CrossRef]
  30. J. T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009). [CrossRef]
  31. J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001–2003 (2005). [CrossRef] [PubMed]
  32. Y. Wu, “Effective Raman theory for a three-level atom in the Λ configuration,” Phys. Rev. A 54, 1586–1592 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited