OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 21011–21017

Digital cleaning and “dirt” layer visualization of an oil painting

Cherry May T. Palomero and Maricor N. Soriano  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 21011-21017 (2011)
http://dx.doi.org/10.1364/OE.19.021011


View Full Text Article

Enhanced HTML    Acrobat PDF (1406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a new digital cleaning technique which uses a neural network that is trained to learn the transformation from dirty to clean segments of a painting image. The inputs and outputs of the network are pixels belonging to dirty and clean segments found in Fernando Amorsolo’s Malacañang by the River. After digital cleaning we visualize the painting’s discoloration by assuming it to be a transmission filter superimposed on the clean painting. Using an RGB color-to-spectrum transformation to obtain the point-per-point spectra of the clean and dirty painting images, we calculate this “dirt” filter and render it for the whole image.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.2000) Image processing : Digital image processing
(100.3020) Image processing : Image reconstruction-restoration
(330.1690) Vision, color, and visual optics : Color

ToC Category:
Image Processing

History
Original Manuscript: April 20, 2011
Revised Manuscript: May 19, 2011
Manuscript Accepted: June 27, 2011
Published: October 7, 2011

Citation
Cherry May T. Palomero and Maricor N. Soriano, "Digital cleaning and “dirt” layer visualization of an oil painting," Opt. Express 19, 21011-21017 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-21011


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Pappas and I. Pitas, “Digital color restoration of old paintings,” IEEE Trans. Image Process.9(2), 291–294 (2000). [CrossRef] [PubMed]
  2. M. Barni, F. Bartolini, and V. Cappellini, “Image processing for virtual restoration of artworks,” IEEE Multimed.7(2), 34–37 (2000). [CrossRef]
  3. R. Berns, F. Imai, and L. Taplin, “Rejuvenating Seurat’s A Sunday On La Grande Jatte- 1884 using color And imaging science techniques: A simulation,” in ICOM 14th Triennial Meeting The Hague: 12–16September,2005: Preprints, I. Verger. ed. (Maney Publishing, 2005), pp 452–458.
  4. C. M. Palomero and M. Soriano, “After digital cleaning: visualization of the dirt layer,” Proc. SPIE7869, 78690O, 78690O-7 (2011), doi:. [CrossRef]
  5. P. Cotte and D. Dupraz, “Spectral imaging of Leonardo Da Vinci’s Mona Lisa: A true color smile without the influence of aged varnish,” in Proc. IS&T CGIV’06, University of Leeds UK, June 19–22, 2006.
  6. R. S. Berns, “Rejuvenating the appearance of cultural heritage using color and imaging science techniques,” in Proc. AIC Colour 05 (AIC, 2005), pp. 369–374.
  7. M. Bacci, F. Baldini, R. Carla, R. Linari, M. Picollo, and B. Radicati, “Color analysis of the Brancacci chapel frescoes: part II,” Appl. Spectrosc.47(4), 399–402 (1993). [CrossRef]
  8. M. Bacci, A. Casini, C. Cucci, M. Picollo, B. Radicati, and M. Vervat, “Non-invasive spectroscopic measurements on the Il Ritratto della figliastra by Giovanni Fattori: identification of pigments and colourimetric analysis,” J. Cult. Herit.4(4), 329–336 (2003). [CrossRef]
  9. C. M. Palomero and M. Soriano, “Neural network for the digital cleaning of an oil painting,” in Digital Image Processing and Analysis, OSA Technical Digest (CD) (Optical Society of America, 2010), paper DMD5. http://www.opticsinfobase.org/abstract.cfm?URI=DIPA-2010-DMD5
  10. A. Gascadi and P. Szolgay, “Image inpainting methods by using cellular neural networks,” in Int’l Workshop on Cellular Neural Networks and Their Applications (IEEE,2005), pp 198–201.
  11. Matlab 2007 Neural Network Toolbox Documentation page.
  12. M. J. Swain and D. H. Ballard, “Color indexing,” Int. J. Comput. Vis.7(1), 11–32 (1991). [CrossRef]
  13. F. Imai and R. Berns, “Spectral estimation using trichromatic digital cameras,” in Proc. of the International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives (AIC, 1999) pp. 42–49.
  14. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt.39(35), 6621–6632 (2000). [CrossRef] [PubMed]
  15. M. Soriano, W. Oblefias, and C. Saloma, “Fluorescence spectrum estimation using multiple color images and minimum negativity constraint,” Opt. Express10(25), 1458–1464 (2002). [PubMed]
  16. K. Martinez, J. Cupitt, D. Saunders, and R. Pillay, “Ten years of art imaging research,” in Proc. IEEE 90, 28–41 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited