OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 21038–21049

Absorption Enhancement in Solution Processed Metal-Semiconductor Nanocomposites

F. Pelayo García de Arquer, Fiona J. Beck, and Gerasimos Konstantatos  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 21038-21049 (2011)
http://dx.doi.org/10.1364/OE.19.021038


View Full Text Article

Enhanced HTML    Acrobat PDF (9681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a full wave 3D simulation study of optical absorption enhancement in solution processed metal-semiconductor nanocomposite ultrathin films, which consist of colloidal metallic nanoparticles (MNPs) and semiconductor matrices of polymer and colloidal quantum dots (CQD). We present an approach for modeling the optical properties of a CQD film, and study the effect of the optical properties of the semiconductor in the near field enhancement showing that CQD is a very promising platform to exploit the benefits of the near-field effects. We show that over a 100% enhancement can be achieved in the visible-near infrared region of the spectrum for CQD PbS films, with a maximum gain factor of 4 when MNPs are on resonance. We study in detail the effect of MNP capping for different ligand lengths and materials and propose solutions to optimize absorption enhancement.

© 2011 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(310.6860) Thin films : Thin films, optical properties
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 18, 2011
Manuscript Accepted: September 13, 2011
Published: October 7, 2011

Citation
F. Pelayo García de Arquer, Fiona J. Beck, and Gerasimos Konstantatos, "Absorption Enhancement in Solution Processed Metal-Semiconductor Nanocomposites," Opt. Express 19, 21038-21049 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-21038


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol.5(6), 391–400 (2010). [CrossRef] [PubMed]
  2. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev.110(1), 389–458 (2010). [CrossRef] [PubMed]
  3. J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3704–3707 (2010). [CrossRef] [PubMed]
  4. J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol.4(1), 40–44 (2009). [CrossRef] [PubMed]
  5. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics2(4), 247–250 (2008). [CrossRef]
  6. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science310(5747), 462–465 (2005). [CrossRef] [PubMed]
  7. A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano4(6), 3374–3380 (2010). [CrossRef] [PubMed]
  8. J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. (Deerfield Beach Fla.)23(1), 12–29 (2011). [CrossRef] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. H. R. Stuart and D. G. Hall, “Enhanced Dipole-Dipole Interaction between Elementary Radiatiors Near a Surface,” Phys. Rev. Lett.80(25), 5663–5666 (1998). [CrossRef]
  11. K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin.121(2), 315–318 (2006). [CrossRef]
  12. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006). [CrossRef]
  13. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010). [CrossRef]
  14. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  15. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  16. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express19(S2Suppl 2), A146–A156 (2011). [CrossRef] [PubMed]
  17. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A14(11), 3001–3007 (1997). [CrossRef]
  18. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  19. H. Hiramatsu and F. E. Osterloh, “A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants,” Chem. Mater.16(13), 2509–2511 (2004). [CrossRef]
  20. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7527 (2004). [CrossRef]
  21. J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano5(2), 959–967 (2011). [CrossRef] [PubMed]
  22. L.-J. Pegg, S. Schumann, and R. A. Hatton, “Enhancing the open-circuit voltage of molecular photovoltaics using oxidized Au nanocrystals,” ACS Nano4(10), 5671–5678 (2010). [CrossRef] [PubMed]
  23. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett.11(2), 438–445 (2011). [CrossRef] [PubMed]
  24. J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett.94(7), 071103 (2009). [CrossRef]
  25. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  26. Lumerical FDTD version 7 http://www.lumerical.com
  27. V. Lucarini, Kramers-Kronig Relations in Optical Materials Research, Springer (2005).
  28. M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett.8(11), 3904–3910 (2008). [CrossRef] [PubMed]
  29. I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B81(23), 235319 (2010). [CrossRef]
  30. SOPRA N&K Database, http://www.sopra-sa.com
  31. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, New York, (1998).
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York, (1983).
  34. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater.5(3), 197–203 (2006). [CrossRef]
  35. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B71(23), 235408 (2005). [CrossRef]
  36. A. Taleb, C. Petit, and M. Pileni, “Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles,” J. Phys. Chem. B102(12), 2214–2220 (1998). [CrossRef]
  37. A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties, Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B149(3), 251–258 (2008). [CrossRef]
  38. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited