OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 21 — Oct. 10, 2011
  • pp: 21081–21090

Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers

Gary F. Walsh, Carlo Forestiere, and Luca Dal Negro  »View Author Affiliations


Optics Express, Vol. 19, Issue 21, pp. 21081-21090 (2011)
http://dx.doi.org/10.1364/OE.19.021081


View Full Text Article

Enhanced HTML    Acrobat PDF (3832 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using spectroscopic ellipsometry and analytical multiple scattering theory, we demonstrate significant depolarization of far-field reflected light due to plasmonic near-field concentration in dimer arrays of metallic nanoparticles fabricated by electron beam lithography. By systematically investigating dimer arrays with varying sub-wavelength interparticle separations, we show that the measured depolarization presents a sharp peak at the Rayleigh cutoff condition for efficient in-plane diffraction. Moreover, by investigating the depolarization of reflected light as a function of the excitation angle, we demonstrate that maximum depolarization occurs in the spectral regions of plasmon-enhanced near-fields. Our results demonstrate that far-field reflection measurements encode information on the near-field spectra of complex nanoparticle arrays, and can be utilized to experimentally determine the optimal conditions for the excitation of sub-wavelength plasmonic resonances. The proposed approach opens novel opportunities for the engineering of nanoparticle arrays with optimized enhancement of optical cross sections for spectroscopic and sensing applications.

© 2011 OSA

OCIS Codes
(240.5770) Optics at surfaces : Roughness
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(290.5855) Scattering : Scattering, polarization
(050.6624) Diffraction and gratings : Subwavelength structures
(240.2130) Optics at surfaces : Ellipsometry and polarimetry

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 16, 2011
Revised Manuscript: September 20, 2011
Manuscript Accepted: September 20, 2011
Published: October 7, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Gary F. Walsh, Carlo Forestiere, and Luca Dal Negro, "Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers," Opt. Express 19, 21081-21090 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-21-21081


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  4. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004). [CrossRef] [PubMed]
  5. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005). [CrossRef] [PubMed]
  6. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101(8), 087403 (2008). [CrossRef] [PubMed]
  7. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008). [CrossRef] [PubMed]
  8. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008). [CrossRef]
  9. L. Dal Negro, N.-N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt.10(6), 064013 (2008). [CrossRef]
  10. C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett.35(2), 133–135 (2010). [CrossRef] [PubMed]
  11. C. Forestiere, G. F. Walsh, G. Miano, and L. Dal Negro, “Nanoplasmonics of prime number arrays,” Opt. Express17(26), 24288–24303 (2009). [CrossRef] [PubMed]
  12. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008). [CrossRef] [PubMed]
  13. J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011). [CrossRef] [PubMed]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1986).
  15. J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres Part I: Multiple expansion and ray optical solutions,” IEEE Trans. Antennas Propag.19(3), 378–390 (1971). [CrossRef]
  16. U. Kreibigv and M. Vollme, eds., Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  17. D. W. Mackowski, “Calculation of total cross-sections of multiple sphere clusters,” J. Opt. Soc. Am. A11(11), 2851–2861 (1994). [CrossRef]
  18. M. Quinten and U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt.32(30), 6173–6182 (1993). [CrossRef] [PubMed]
  19. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt.34(21), 4573–4588 (1995). [CrossRef] [PubMed]
  20. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),” J. Opt. Soc. Am.31(3), 213–222 (1941). [CrossRef]
  21. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt.4(10), 1275–1297 (1965). [CrossRef]
  22. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1-3), 62–67 (2005). [CrossRef]
  23. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010). [CrossRef] [PubMed]
  24. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003). [CrossRef] [PubMed]
  25. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  26. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9(11), 3922–3929 (2009). [CrossRef] [PubMed]
  27. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express17(5), 3741–3753 (2009). [CrossRef] [PubMed]
  28. B. N. Khlebtsov, V. A. Khanadeev, and N. G. Khlebtsov, “Observation of extra-high depolarized light scattering spectra from gold nanorods,” J. Phys. Chem. C112(33), 12760–12768 (2008). [CrossRef]
  29. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, L. A. Dykman, A. V. Alekseeva, L. A. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109(28), 13578–13584 (2005). [CrossRef] [PubMed]
  30. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  31. R. Joerger, K. Forcht, A. Gombert, M. Köhl, and W. Graf, “Influence of incoherent superposition of light on ellipsometric coefficients,” Appl. Opt.36(1), 319–327 (1997). [CrossRef] [PubMed]
  32. H. Fujiwara, Spectroscopic Ellipsometry (John Wiley & Sons, Ltd, 2007).
  33. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  34. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  36. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited