OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21116–21134

Full frequency-domain approach to reciprocal microlasers and nanolasers–perspective from Lorentz reciprocity

Shu-Wei Chang  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21116-21134 (2011)
http://dx.doi.org/10.1364/OE.19.021116


View Full Text Article

Enhanced HTML    Acrobat PDF (1236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a frequency-domain formulation in the form of generalized eigenvalue problems for reciprocal microlasers and nanolasers. While the goal is to explore the resonance properties of dispersive cavities, the starting point of our approach is the mode expansion of arbitrary current sources inside the active regions of lasers. Due to the Lorentz reciprocity, a mode orthogonality relation is present and serves as the basis to distinguish various cavity modes. This scheme can also incorporate the asymmetric Fano lineshape into the emission spectra of cavities. We show how to obtain the important parameters of laser cavities based on this formulation. The proposed approach could be an alternative to other computation schemes such as the finite-difference-time-domain method for reciprocal cavities.

© 2011 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 1, 2011
Revised Manuscript: September 18, 2011
Manuscript Accepted: September 27, 2011
Published: October 10, 2011

Citation
Shu-Wei Chang, "Full frequency-domain approach to reciprocal microlasers and nanolasers–perspective from Lorentz reciprocity," Opt. Express 19, 21116-21134 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21116


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  2. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef] [PubMed]
  3. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  4. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010). [CrossRef] [PubMed]
  5. S. Kita, S. Hachuda, K. Nozaki, and T. Baba, “Nanoslot laser,” Appl. Phys. Lett. 97, 161108 (2010). [CrossRef]
  6. C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010). [CrossRef]
  7. M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett. 97, 191108 (2010).
  8. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011). [CrossRef]
  9. M. W. Kim and P. C. Ku, “Semiconductor nanoring lasers,” Appl. Phys. Lett. 98, 201105 (2011).
  10. C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, “Metal-cavity surface-emitting microlaser with hybrid metal-dbr reflectors,” Opt. Lett. 36, 2447–2449 (2011). [CrossRef] [PubMed]
  11. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  12. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech.23, 623–630 (1975). [CrossRef]
  13. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Electromagn. Compat. 22, 191–202 (1980). [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  15. A. I. Nosich, E. I. Smotrova, S. V. Boriskina, R. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253–1272 (2007). [CrossRef]
  16. S. H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express 12, 3827–3833 (2004). [CrossRef] [PubMed]
  17. Y. Huang and S. T. Ho, “Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics,” Opt. Express 14, 3569–3587 (2006). [CrossRef] [PubMed]
  18. S. V. Zhukovsky and D. N. Chigrin, “Numerical modelling of lasing in microstructures,” Phys. Stat. Solidi B 244, 3515–3527 (2007). [CrossRef]
  19. S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, “Switchable lasing in multimode microcavities,” Phys. Rev. Lett. 99, 073902 (2007). [CrossRef] [PubMed]
  20. S. V. Zhukovsky, D. N. Chigrin, and J. Kroha, “Bistability and mode interaction in microlasers,” Phys. Rev. A 79, 033803 (2009). [CrossRef]
  21. J. Jin, The Finite Element Method in Electromagnetics (Wiley and Sons, 2002).
  22. K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photonics Rev., (2011). [CrossRef]
  23. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  24. J. Wiersig, “Boundary element method for resonances in dielectric microcavities,” J. Opt. A: Pure Appl. Opt. 5, 53–60 (2003). [CrossRef]
  25. J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003). [CrossRef]
  26. S. Y. Lee, M. S. Kurdoglyan, S. Rim, and C. M. Kim, “Resonance patterns in a stadium-shaped microcavity,” Phys. Rev. A 70, 023809 (2004). [CrossRef]
  27. M. S. Kurdoglyan, S. Y. Lee, S. Rim, and C. M. Kim, “Unidirectional lasing from a microcavity with a rounded isosceles triangle shape,” Opt. Lett. 29, 2758–2760 (2004). [CrossRef] [PubMed]
  28. T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005). [CrossRef]
  29. J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006). [CrossRef]
  30. A. G. Vlasov and O. P. Skliarov, “An electromagnetic boundary value problem for a radiating dielectric cylinder with reflectors at both ends,” Radio. Eng. Electron. Phys. 22, 17–23 (1977).
  31. B. Klein, L. F. Register, M. Grupen, and K. Hess, “Numerical simulation of vertical cavity surface emitting lasers,” Opt. Express 2, 163–168 (1998). [CrossRef] [PubMed]
  32. B. Klein, L. F. Register, K. Hess, D. G. Deppe, and Q. Deng, “Self-consistent Green’s function approach to the analysis of dielectrically apertured vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 73, 3324–3326 (1998). [CrossRef]
  33. E. I. Smotrova and A. I. Nosich, “Mathematical study of the two-dimensional lasing problem for the whispering-gallery modes in a circular dielectric microcavity,” Opt. Quantum Electron. 36, 213–221 (2004). [CrossRef]
  34. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and nonuniform gain: quasi-3-D modeling with accurate 2-D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005). [CrossRef]
  35. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006). [CrossRef]
  36. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Coninuous Media, 2nd ed. (Butterworth-Heinemann, 1984).
  37. C. A. Balanis, Advanced Engineering Electromagnetics, 1st ed. (Wiley and Sons, 1989).
  38. H. A. Lorentz, “The theorem of Poynting concerning the energy in the electromagnetic field and two general propositions concerning the propagation of light,” Verh. K. Akad. Wet. Amsterdam, Afd. Natuurkd. 4, 176–187 (1896).
  39. N. Qureshi, H. Schmidt, and A. R. Hawkins, “Cavity enhancement of the magneto-optic Kerr effect for optical studies of magnetic nanostructures,” Appl. Phys. Lett. 85, 431–433 (2004). [CrossRef]
  40. N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, and H. Schmidt, “Cavity-enhanced magnetooptical observation of magnetization reversal in individual single-domain nanomagnets,” Nano Lett. 5, 1413–1417 (2005). [CrossRef] [PubMed]
  41. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982). [CrossRef]
  42. H. Aoki, “Novel Landau level laser in the quantum Hall regime,” Appl. Phys. Lett. 48, 559–560 (1986). [CrossRef]
  43. G. Scalari, C. Walther, L. Sirigu, M. L. Sadowski, H. Beere, D. Ritchie, N. Hoyler, M. Giovannini, and J. Faist, “Strong confinement in terahertz intersubband lasers by intense magnetic fields,” Phys. Rev. B 76, 115305 (2007). [CrossRef]
  44. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3, 41–45 (2009). [CrossRef]
  45. G. Scalari, D. Turčinková, J. Lloyd-Hughes, M. I. Amanti, M. Fischer, M. Beck, and J. Faist, “Magnetically assisted quantum cascade laser emitting from 740 GHz to 1.4 THz,” Appl. Phys. Lett.97, 081110 (2010). [CrossRef]
  46. S. W. Chang, C. Y. Lu, S. L. Chuang, T. D. Germann, U. W. Pohl, and D. Bimberg, “Theory of metal-cavity surface-emitting microlasers and comparison with experiment,” IEEE. J. Sel. Top. Quantum. Electron. (to be published).
  47. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford, 1996).
  48. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, 1st ed. (Wiley and Sons, 1995).
  49. S. W. Chang, T. R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited