OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21135–21144

Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber

Wen Qi Zhang, Heike Ebendorff-Heidepriem, Tanya M. Monro, and Shahraam Afshar V.  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21135-21144 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We fabricated a microstructured optical fiber with a dispersion profile that, according to calculations, is near-zero and flat, with 3 zero dispersion wavelengths in the mid-IR. To the best of our knowledge this is the first report of the fabrication of such a fiber. Simulations of multimode supercontinuum generation were performed using a simplified approach. Strong agreement between experiments and simulations were observed using this approach.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(260.2030) Physical optics : Dispersion
(260.3060) Physical optics : Infrared
(060.4005) Fiber optics and optical communications : Microstructured fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 8, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: September 27, 2011
Published: October 10, 2011

Wen Qi Zhang, Heike Ebendorff-Heidepriem, Tanya M. Monro, and Shahraam Afshar V., "Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber," Opt. Express 19, 21135-21144 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  3. L. J. Lu and A. Safaai-Jazi, “Analysis and design of multi-clad single mode fibers with three zero-dispersion wavelengths,” in Proc. IEEE Southeastcon 1989, 12B5 (1989).
  4. A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687–697 (2001). [CrossRef] [PubMed]
  5. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003). [CrossRef] [PubMed]
  6. R. Mehra and P. K. Inaniya, “Design of photonic crystal fiber for ultra low dispersion in wide wavelength range with three zero dispersion wavelengths,” AIP Conference Proceedings1324, 175–177 (2010). [CrossRef]
  7. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18, 20529–20534 (2010). [CrossRef] [PubMed]
  8. W. Q. Zhang, S. Afshar V., and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19311–19327 (2009). [CrossRef]
  9. J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003). [CrossRef]
  10. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008). [CrossRef]
  11. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009). [CrossRef] [PubMed]
  12. R. T. Chapman, T. J. Butcher, P. Horak, F. Poletti, J. G. Frey, and W. S. Brocklesby, “Modal effects on pump-pulse propagation in an ar-filled capillary,” Opt. Express 18, 13279–13284 (2010). [CrossRef] [PubMed]
  13. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004). [CrossRef] [PubMed]
  14. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006). [CrossRef]
  15. S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009). [CrossRef] [PubMed]
  16. M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  17. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007). [CrossRef] [PubMed]
  18. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972). [CrossRef]
  19. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009). [CrossRef] [PubMed]
  20. T. X. Tran and F. Biancalana, “An accurate envelope equation for lightpropagation in photonic nanowires: newnonlinear effects,” Opt. Express 17, 17934–17949 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited