OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21155–21162

An extremely broad band metamaterial absorber based on destructive interference

Jingbo Sun, Lingyun Liu, Guoyan Dong, and Ji Zhou  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21155-21162 (2011)
http://dx.doi.org/10.1364/OE.19.021155


View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a design of an extremely broad frequency band absorber based on destructive interference mechanism. Metamaterial of multilayered SRRs structure is used to realize a desirable refractive index dispersion spectrum, which can induce a successive anti-reflection in a wide frequency range. The corresponding high absorptance originates from the destructive interference of two reflection waves from the two surfaces of the metamaterial. A strongly absorptive bandwidth of almost 60GHz is demonstrated in the range of 0 to 70GHz numerically. This design provides an effective and feasible way to construct broad band absorber in stealth technology, as well as the enhanced transmittance devices.

© 2011 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(260.3160) Physical optics : Interference
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: June 21, 2011
Revised Manuscript: August 7, 2011
Manuscript Accepted: September 4, 2011
Published: October 10, 2011

Citation
Jingbo Sun, Lingyun Liu, Guoyan Dong, and Ji Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Opt. Express 19, 21155-21162 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21155


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  2. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(3), 036621–036625 (2006). [CrossRef] [PubMed]
  3. W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and Y. Jessie, “Chin, “Arbitrarily elliptical-cylindrical invisible cloaking,” J. Phys. D Appl. Phys.41, 085504–085507 (2008).
  4. Y. You, G. W. Kattawar, P. W. Zhai, and P. Yang, “Invisibility cloaks for irregular particles using coordinate transformations,” Opt. Express16(9), 6134–6145 (2008). [CrossRef] [PubMed]
  5. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009). [CrossRef] [PubMed]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  9. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  10. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incident terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008). [CrossRef]
  11. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Experimental verification of metamaterial based subwavelength microwave absorbers,” J. Appl. Phys.108(8), 083113–083118 (2010). [CrossRef]
  12. Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process.102(1), 99–103 (2011). [CrossRef]
  13. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  14. C. Wu, Y. Avitzour, and G. Shvets, “Ultra-thin, wide-angle perfect absorber for infrared frequencies,” Proc. SPIE, Proceedings of Metamaterials: Fundamentals and Applications, San Diego, CA, August 10–14 (2008).
  15. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19(2), 415–424 (2011). [CrossRef] [PubMed]
  16. K. B. Alici and E. Ozbay, “Photonic metamaterial absorber designs for infrared solar-cell applications,” Proc. SPIE7772, 77721B (2010). [CrossRef]
  17. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B79(4), 045131 (2009). [CrossRef]
  18. B. Wang, Th. Koschny, and C. M. Soukoulis, “Wide-angle and polarization independent chiral metamaterials absorbers,” Phys. Rev. B80(3), 033108 (2009). [CrossRef]
  19. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Experimental verification of metamaterial based subwavelength microwave absorbers,” J. Appl. Phys.108(8), 083113 (2010). [CrossRef]
  20. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19(15), 14260 (2011). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1980), Chap. 1.
  22. H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901–073904 (2010). [CrossRef] [PubMed]
  23. J. Lee and S. Lim, “Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance,” Electron. Lett.47(1), 8–9 (2011). [CrossRef]
  24. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys.43(22), 225102 (2010). [CrossRef]
  25. S. Gu, J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, “A broadband low-reflection metamaterial absorber,” J. Appl. Phys.108(6), 064913–064918 (2010). [CrossRef]
  26. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited