OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21189–21198

Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit

Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21189-21198 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2999 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Integrated Optics

Original Manuscript: July 22, 2011
Revised Manuscript: September 17, 2011
Manuscript Accepted: September 19, 2011
Published: October 10, 2011

Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, "Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit," Opt. Express 19, 21189-21198 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  3. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009). [CrossRef] [PubMed]
  4. D. K. Gramotnev and S. I. Bozhevolnyi; “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  6. L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  7. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000). [CrossRef]
  8. F. R. Yang, K. P. Ma, Y. X. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microw. Theory Tech. 47(8), 1509–1514 (1999). [CrossRef]
  9. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  10. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). [CrossRef]
  11. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  12. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), 266–280 (2005). [CrossRef]
  13. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29(14), 1617–1619 (2004). [CrossRef] [PubMed]
  14. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008). [CrossRef] [PubMed]
  15. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009). [CrossRef] [PubMed]
  16. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006). [CrossRef] [PubMed]
  17. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]
  18. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005). [CrossRef]
  19. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67(23), 235404 (2003). [CrossRef]
  20. Y. G. Ma and C. K. Ong, “Generation of surface-plasmon-polariton like resonance mode on microwave metallic gratings,” New J. Phys. 10(6), 063017 (2008). [CrossRef]
  21. Z. J. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003). [CrossRef]
  22. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  23. Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76(8), 085413 (2007). [CrossRef]
  24. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010). [CrossRef] [PubMed]
  25. M. L. Nesterov, D. Martin-Cano, A. I. Fernandez-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Geometrically induced modification of surface plasmons in the optical and telecom regimes,” Opt. Lett. 35(3), 423–425 (2010). [CrossRef] [PubMed]
  26. W. S. Zhao, O. M. Eldaiki, R. X. Yang, and Z. L. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010). [CrossRef] [PubMed]
  27. Y. G. Ma, X. S. Rao, and C. K. Ong, “Evolution of microwave resonance in reflection metallic gratings under inner gap modification,” J. Appl. Phys. 103, 123510 (2008). [CrossRef]
  28. J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method,” Opt. Exp. 15(14), 9048–9062 (2007). [CrossRef]
  29. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  30. Y. G. Ma, X. C. Wang, and C. K. Ong, “Negative refractive index of metallic cross-I-shaped pairs: Origin and evolution with pair gap width,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1 Pt 2), 016605 (2008). [CrossRef] [PubMed]
  31. Encyclopedic handbook of integrated optics, K. Iga and Y. Kokubun, Ed (CRC Press, 2006).
  32. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited