OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21385–21395

Experimental demonstration of a novel bio‑sensing platform via plasmonic band gap formation in gold nano‑patch arrays

Marco Grande, Maria Antonietta Vincenti, Tiziana Stomeo, Giuseppe Morea, Roberto Marani, Valeria Marrocco, Vincenzo Petruzzelli, Antonella D’Orazio, Roberto Cingolani, Massimo De Vittorio, Domenico de Ceglia, and Michael Scalora  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21385-21395 (2011)
http://dx.doi.org/10.1364/OE.19.021385


View Full Text Article

Enhanced HTML    Acrobat PDF (1902 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we discuss the possibility of implementing a novel bio-sensing platform based on the observation of the shift of the leaky surface plasmon mode that occurs at the edge of the plasmonic band gap of metal gratings, when an analyte is deposited on top of the metallic structure. We report numerical calculations, fabrication and experimental measurements to prove the sensing capability of a two-dimensional array of gold nano-patches in the detection of a small quantity of Isopropyl Alcohol (IPA) deposited on top of sensor surface. The calculated sensitivity of our device approaches a value of 1000 nm/RIU with a corresponding Figure of Merit (FOM) of 222 RIU−1. The presence of IPA can also be visually estimated by observing a color variation in the diffracted field. We show that color brightness and intensity variations can be ascribed to a change in the aperture size, keeping the periodicity constant, and to different types of analyte deposited on the sample, respectively. Moreover, we demonstrate that unavoidable fabrication imperfections revealed by the presence of rounded corners and surface roughness do not significantly affect device performance.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Sensors

History
Original Manuscript: August 3, 2011
Revised Manuscript: August 29, 2011
Manuscript Accepted: September 3, 2011
Published: October 13, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Marco Grande, Maria Antonietta Vincenti, Tiziana Stomeo, Giuseppe Morea, Roberto Marani, Valeria Marrocco, Vincenzo Petruzzelli, Antonella D’Orazio, Roberto Cingolani, Massimo De Vittorio, Domenico de Ceglia, and Michael Scalora, "Experimental demonstration of a novel bio‑sensing platform via plasmonic band gap formation in gold nano‑patch arrays," Opt. Express 19, 21385-21395 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21385


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express16(22), 18188–18193 (2008). [CrossRef] [PubMed]
  2. T. Stomeo, M. Grande, G. Rainò, A. Passaseo, A. D’Orazio, R. Cingolani, A. Locatelli, D. Modotto, C. De Angelis, and M. De Vittorio, “Optical filter based on two coupled PhC GaAs-membranes,” Opt. Lett.35(3), 411–413 (2010). [CrossRef] [PubMed]
  3. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009). [CrossRef] [PubMed]
  4. T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J.1(3), 197–204 (2009). [CrossRef]
  5. X. Dai, S. J. Mihailov, and C. Blanchetière, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng.49(2), 024401 (2010). [CrossRef]
  6. M. A. Vincenti, S. Trevisi, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, N. Cioffi, D. de Ceglia, and M. Scalora, “Theoretical analysis of a palladium-based one-dimensional metallo-dielectric photonic band gap structure for applications to H2 sensors,” J. Appl. Phys.103(6), 064507 (2008). [CrossRef]
  7. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel Switzerland)11(3), 2961–2971 (2011). [CrossRef]
  8. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors (Basel Switzerland)11(2), 1565–1588 (2011). [CrossRef]
  9. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express15(18), 11413–11426 (2007). [CrossRef] [PubMed]
  10. A. Goldman, M. Goldman, A. Roos, and N. Kaabouch, “Plasma-surface interaction phenomena induced by corona discharges. Application to aerosols detection and to diagnosis on surface layers,” Pure Appl. Chem.64(5), 759–763 (1992). [CrossRef]
  11. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.216(4), 398–410 (1968). [CrossRef]
  12. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A23, 2135–2136 (1968).
  13. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano4(3), 1664–1670 (2010). [CrossRef] [PubMed]
  14. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  15. J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc.132(28), 9600–9601 (2010). [CrossRef] [PubMed]
  16. J. Zhang, T. Atay, and A. V. Nurmikko, “Optical detection of brain cell activity using plasmonic gold nanoparticles,” Nano Lett.9(2), 519–524 (2009). [CrossRef] [PubMed]
  17. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano5(6), 4843–4849 (2011). [CrossRef] [PubMed]
  18. C. L. Baciu, J. Becker, A. Janshoff, and C. Sönnichsen, “Protein-membrane interaction probed by single plasmonic nanoparticles,” Nano Lett.8(6), 1724–1728 (2008). [CrossRef] [PubMed]
  19. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010). [CrossRef] [PubMed]
  20. W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett.11(1), 8–15 (2011). [CrossRef] [PubMed]
  21. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  22. G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano3(4), 795–806 (2009). [CrossRef] [PubMed]
  23. H. Altug, A. A. Yanik, M. Huang, and R. Adato, “Ultrasensitive plasmonic sensors mold the flow of light and fluidics,” SPIE Newsroom, 20 Sept. 2010, http://spie.org/x41536.xml?ArticleID=x41536
  24. R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffractive grating spectrum,” Philos. Mag.4, 396–402 (1902).
  25. R. W. Wood, “Diffraction gratings with controlled groove form and abnormal distribution of intensity,” Philos. Mag.23, 310–317 (1912).
  26. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character79(532), 399–416 (1907). [CrossRef]
  27. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),” J. Opt. Soc. Am.31(3), 213–222 (1941). [CrossRef]
  28. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt.4(10), 1275–1297 (1965). [CrossRef]
  29. D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances1(3), 032151 (2011). [CrossRef]
  30. R. Marani, M. Grande, V. Marrocco, A. D’Orazio, V. Petruzzelli, M. A. Vincenti, and D. de Ceglia, “Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps,” Opt. Lett.36(6), 903–905 (2011). [CrossRef] [PubMed]
  31. M. A. Vincenti, D. de Ceglia, M. Scalora, R. Marani, V. Marrocco, M. Grande, G. Morea, and A. D’Orazio, “Enhancement and suppression of transmission in 3-D nanoslits arrays with 1- and 2-D periodicities,” Proc. SPIE7946, 794625, 794625–794627 (2011). [CrossRef]
  32. H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  33. C. Munuera, J. A. Aznarez, E. Rodrıguez-Canas, A. I. Oliva, M. Aguilar, and J. L. Sacedon, “Study of rough growth fronts of evaporated polycrystalline gold films,” J. Vac. Sci. Technol. A22(4), 1767–1772 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited