OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21396–21403

Single step measurement of optical transmitters Henry factor using sinusoidal optical phase modulations

J.-G. Provost, A. Martinez, A. Shen, and A. Ramdane  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21396-21403 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (765 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurement of the Henry factor over large optical bandwidth is carried out in a single step without any filtering, using a technique based on the sinusoidal phase modulation method. This fast technique was successfully applied to a directly modulated Fabry Perot laser to obtain simultaneously the linewidth enhancement factor (LEF) of 14 longitudinal modes. It is also well suited for electro-absorption modulators (EAM) for which the α-factor is determined over 15 nm optical bandwidth. A very good agreement is found with the well established fiber transfer function method.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5060) Instrumentation, measurement, and metrology : Phase modulation

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 5, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 6, 2011
Published: October 13, 2011

J.-G. Provost, A. Martinez, A. Shen, and A. Ramdane, "Single step measurement of optical transmitters Henry factor using sinusoidal optical phase modulations," Opt. Express 19, 21396-21403 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982). [CrossRef]
  2. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988). [CrossRef]
  3. A. Villafranca, A. Villafranca, G. Giuliani, and I. Garces, “Mode-resolved measurements of the linewidth enhancement factor of a Fabry–Pérot laser,” IEEE Photon. Technol. Lett. 21(17), 1256–1258 (2009). [CrossRef]
  4. G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett. 13(5), 430–432 (2001). [CrossRef]
  5. Y. Yu, G. Giuliani, and S. Donati, “Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect,” IEEE Photon. Technol. Lett. 16(4), 990–992 (2004). [CrossRef]
  6. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983). [CrossRef]
  7. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993). [CrossRef]
  8. R. C. Srinivasan and J. C. Cartledge, “On using fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photon. Technol. Lett. 7(11), 1327–1329 (1995). [CrossRef]
  9. I. Kang and C. Dorrer, “Method of optical pulse characterization using sinusoidal optical phase modulations,” Opt. Lett. 32(17), 2538–2540 (2007). [CrossRef] [PubMed]
  10. R. Schimpe, J. E. Bowers, and T. L. Koch, “Characterization of frequency response of 1.5 µm InGaAsP DFB laser diode and InGaAs pin photodiode by heterodyne measurement technique,” Electron. Lett. 22(9), 453–454 (1986). [CrossRef]
  11. J. Debeau, B. Kowalski, and R. Boittin, “Simple method for the complete characterization of an optical pulse,” Opt. Lett. 23(22), 1784–1786 (1998). [CrossRef] [PubMed]
  12. M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral phase measurement of mode-locked diode laser pulses by beating sidebands generated by electrooptical mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000). [CrossRef]
  13. C. Dorrer and I. Kang, “Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27(15), 1315–1317 (2002). [CrossRef] [PubMed]
  14. P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 206–212 (2004). [CrossRef]
  15. C. Gosset, J. Renaudier, G.-H. Duan, G. Aubin, and J.-L. Oudar, “Phase and amplitude characterization of a 40-GHz self-pulsating DBR laser based on autocorrelation analysis,” J. Lightwave Technol. 24(2), 970–975 (2006). [CrossRef]
  16. Y. Ozeki, S. Takasaka, and M. Sakano, “Electrooptic spectral shearing interferometry using a Mach-Zehnder modulator with a bias voltage sweeper,” IEEE Photon. Technol. Lett. 18(8), 911–913 (2006). [CrossRef]
  17. J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006). [CrossRef] [PubMed]
  18. D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express 18(19), 19724–19731 (2010). [CrossRef] [PubMed]
  19. G.-H. Duan, A. Shen, A. Akrout, F. Van Dijk, F. Lelarge, F. Pommereau, O. LeGouezigou, J.-G. Provost, H. Gariah, F. Blache, F. Mallecot, K. Merghem, A. Martinez, and A. Ramdane, “High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications,” Bell Labs Tech. J. 14(3), 63–84 (2009). [CrossRef]
  20. B. Riou, N. Trenado, F. Grillot, F. Mallecot, V. Colson, M. F. Martineau, B. Thédrez, L. Silvestre, D. Meichenin, K. Merghem, and A. Ramdane, “High Performance Strained-Layer InGaAsP/InP Laser With Low Linewidth Enhancement Factor Over 30 nm,” Proceedings of European Conference on Optical Communication (ECOC) 2003, paper We4.P.85, Rimini, Italy, (2003).
  21. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]
  22. D. Delprat, A. Ramdane, A. Ougazzaden, H. Nakajima, and M. Carré, “Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,” Electron. Lett. 33(1), 53–54 (1997). [CrossRef]
  23. J.-G. Provost, C. Kazmierski, F. Blache, and J. Decobert, “High Extinction Ratio Picosecond Pulses at 40 GHz Rate over 40 nm with an AlGaInAs EAM Characterises by a Spectrogram Acquisition Method,” Proceedings of European Conference on Optical Communication (ECOC) 2005, paper Tu1.5.5 (2005)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited