OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21540–21551

Refractometric sensing with fluorescent-core microcapillaries

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21540-21551 (2011)
http://dx.doi.org/10.1364/OE.19.021540


View Full Text Article

Acrobat PDF (3792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Capillaries present a promising structure for microfluidic refractive index sensors. We demonstrate a capillary-type fluorescent core microcavity sensor based on whispering gallery mode (WGM) resonances. The device consists of a microcapillary having a layer of fluorescent silicon quantum dots (QDs) coated on the channel surface. The high effective index of the QD layer confines the electric field near the capillary channel and causes the development of WGM resonances in the fluorescence spectrum. Solutions consisting of sucrose dissolved in water were pumped through the capillary while the fluorescence WGMs were measured with a spectrometer. The device showed a refractometric sensitivity of 9.8 nm/RIU (up to 13.8 nm/RIU for higher solution refractive index) and a maximum detection limit of ~7.2 x 10−3 RIU. Modeling the field inside the capillary structure, which is analogous to a layered hollow ring resonator, shows that sensitivities as high as 100 nm/RIU and detection limits as low as ~10−5 RIU may be achievable by optimizing the QD film thickness.

© 2011 OSA

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.5750) Optical devices : Resonators
(250.5230) Optoelectronics : Photoluminescence
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Sensors

History
Original Manuscript: July 11, 2011
Revised Manuscript: September 6, 2011
Manuscript Accepted: September 30, 2011
Published: October 18, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, "Refractometric sensing with fluorescent-core microcapillaries," Opt. Express 19, 21540-21551 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21540


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. H. Diercks, A. Ozinsky, C. L. Hansen, J. M. Spotts, D. J. Rodriguez, and A. Aderem, “A microfluidic device for multiplexed protein detection in nano-liter volumes,” Anal. Biochem.386(1), 30–35 (2009). [CrossRef] [PubMed]
  2. K. B. Mogensen and J. P. Kutter, “Optical detection in microfluidic systems,” Electrophoresis30(S1Suppl 1), S92–S100 (2009). [CrossRef] [PubMed]
  3. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Integrated refractive index optical ring resonator detector for capillary electrophoresis,” Anal. Chem.79(3), 930–937 (2007). [CrossRef] [PubMed]
  4. E. Krioukov, J. Greve, and C. Otto, “Performance of integrated optical microcavities for refractive index and fluorescence sensing,” Sens. Actuators B Chem.90(1-3), 58–67 (2003). [CrossRef]
  5. S. Haeberle and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab Chip7(9), 1094–1110 (2007). [CrossRef] [PubMed]
  6. Some examples include FluimedX ( www.fluimedx.com ), Biacore ( www.biacore.com ), and Farfield Sensors ( www.farfield-group.com ).
  7. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007). [CrossRef] [PubMed]
  8. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett.33(14), 1623–1625 (2008). [CrossRef] [PubMed]
  9. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007). [CrossRef] [PubMed]
  10. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip7(9), 1171–1175 (2007). [CrossRef] [PubMed]
  11. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003). [CrossRef] [PubMed]
  12. N. A. Abu-Hatab, J. F. John, J. M. Oran, and M. J. Sepaniak, “Multiplexed microfluidic surface-enhanced Raman spectroscopy,” Appl. Spectrosc.61(10), 1116–1122 (2007). [CrossRef] [PubMed]
  13. H. Dirac and P. Gravesen, “Realisation and characterisation of all liquid optical waveguides,” Proc. MEMS. 14th IEEE International Conference on Micro Electro Mechanical systems, 4590462 (2001).
  14. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008). [CrossRef] [PubMed]
  15. A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett.92(14), 141107 (2008). [CrossRef]
  16. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett.92(22), 221108 (2008). [CrossRef] [PubMed]
  17. E. Nuhiji and P. Mulvaney, “Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres,” Small3(8), 1408–1414 (2007). [CrossRef] [PubMed]
  18. M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering gallery microresonators: precession approach for spherical mode analysis and emission patterns,” Opt. Commun.113(1-3), 133–143 (1994). [CrossRef]
  19. I. M. White, H. Zhu, J. D. Suter, X. Fan, and M. Zourob, Methods in Molecular Biology: Biosensors and Biodetection, edited by A. Rasooly and K.E. Herold, (Humana Press, 2009). Chap. 7.
  20. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett.97(1), 011105 (2010). [CrossRef]
  21. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillarie,” Opt. Express15(19), 12011–12016 (2007). [CrossRef] [PubMed]
  22. I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J.7(1), 28–35 (2007). [CrossRef]
  23. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett.31(9), 1319–1321 (2006). [CrossRef] [PubMed]
  24. G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem.133(1), 105–112 (2008). [CrossRef]
  25. Product numbers TSP025375 and TSP100170, respectively, from Polymicro Technologies ( www.polymicro.com ).
  26. C. M. Hessel, M. A. Summers, A. Meldrum, M. Malac, and J. G. C. Veinot, “Direct patterning, conformal coating, and erbium doping of luminescent nc-Si/SiO2 thin films from solution processable hydrogen silsesquioxane,” Adv. Mater. (Deerfield Beach Fla.)19(21), 3513–3516 (2007). [CrossRef]
  27. Known by its standard trade name FoX-15, Dow Corning, Inc. FoX-15 is a negative electron beam resist.
  28. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1209 (1965). [CrossRef]
  29. R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A78(2), 023829 (2008). [CrossRef]
  30. C. M. Hessel, E. J. Henderson, and J. G. C. Veinot, “An investigation of the formation and growth of oxide-embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites,” J. Phys. Chem. C111(19), 6956–6961 (2007). [CrossRef]
  31. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt.46(3), 389–396 (2007). [CrossRef] [PubMed]
  32. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  33. A. W. Poon, R. K. Chang, and J. A. Lock, “Spiral morphology-dependent resonances in an optical fiber: effects of fiber tilt and focused Gaussian beam illumination,” Opt. Lett.23(14), 1105–1107 (1998). [CrossRef] [PubMed]
  34. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Interrogation of whispering-gallery modes resonances in cylindrical microcavities by backreflection detection,” Opt. Lett.34(7), 1039–1041 (2009). [CrossRef] [PubMed]
  35. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt.46(3), 389–396 (2007). [CrossRef] [PubMed]
  36. G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano4(6), 3123–3130 (2010). [CrossRef] [PubMed]
  37. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  38. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express17(19), 16632–16645 (2009). [CrossRef] [PubMed]
  39. O. Schmidt, P. Kiesel, S. Mohta, and N. M. Johnson, “Resolving pm wavelength shifts in optical sensing,” Appl. Phys. B86(4), 593–600 (2007). [CrossRef]
  40. A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B90(3-4), 561–567 (2008). [CrossRef]
  41. D. E. Gómez, I. Pastoriza-Santos, and P. Mulvaney, “Tunable whispering gallery mode emission from quantum-dot-doped microspheres,” Small1(2), 238–241 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited