OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21588–21594

Mode-size converter with high coupling efficiency and broad bandwidth

Qing Fang, Junfeng Song, Xianshu Luo, Mingbin Yu, Guoqiang Lo, and Yuliang Liu  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21588-21594 (2011)
http://dx.doi.org/10.1364/OE.19.021588


View Full Text Article

Enhanced HTML    Acrobat PDF (1596 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultralow coupling loss and broad bandwidth fiber-to-waveguide mode-size converter is demonstrated for nano-scale waveguides on SOI platform using CMOS technology in this paper. The mode-size converter consists of a cantilevered PECVD SiO2 waveguide and a-Si nano-tapers by removing the adjacent SiO2 layer and underlying substrate Si. The a-Si waveguide is located at the center of the cantilevered SiO2 waveguide. We characterized the cantilevered mode-size converter using cleaved optical single mode fiber with 10.5 µm mode field diameter. With refractive index (1.375) matching oil, the measured coupling efficiencies between the cleaved optical fiber and this converter are higher than 80% per facet and 70% per facet for TE and TM modes at 1600 nm, respectively. The polarization dependent loss and the coupling loss variation of this converter are less than 1.0 dB at the wavelength range of 1520 ~1640 nm. The 1-dB bandwidths for both TE and TM modes are more than 120 nm. The alignment tolerances for TE and TM modes are ± 2.8 µm and ± 2.1 µm at 1-dB excess loss in horizontal direction and vertical direction, respectively.

© 2011 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: August 15, 2011
Revised Manuscript: September 20, 2011
Manuscript Accepted: September 22, 2011
Published: October 18, 2011

Citation
Qing Fang, Junfeng Song, Xianshu Luo, Mingbin Yu, Guoqiang Lo, and Yuliang Liu, "Mode-size converter with high coupling efficiency and broad bandwidth," Opt. Express 19, 21588-21594 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and G. R. Baets, “Compact wavelength-selective functions in Silicon-on-Insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron.12(6), 1394–1401 (2006). [CrossRef]
  2. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express16(9), 6425–6432 (2008). [CrossRef] [PubMed]
  3. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Kakahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005). [CrossRef]
  4. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010). [CrossRef] [PubMed]
  5. Q. Fang, J. F. Song, T. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011). [CrossRef]
  6. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  7. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  8. Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18(5), 5106–5113 (2010). [CrossRef] [PubMed]
  9. Q. Fang, Y. T. Phang, C. W. Tan, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Multi-channel silicon photonic receiver based on ring-resonators,” Opt. Express18(13), 13510–13515 (2010). [CrossRef] [PubMed]
  10. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13-µm CMOS SOI technology,” IEEE J. Solid-State Circuits41(12), 2945–2955 (2006). [CrossRef]
  11. T. Wahlbrink, W. S. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009). [CrossRef]
  12. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibers,” Electron. Lett.38(25), 1669–1670 (2002). [CrossRef]
  13. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007). [CrossRef]
  14. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004). [CrossRef] [PubMed]
  15. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J. Fédéli, and L. El Melhaoui, “Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightwave Technol.24(10), 3810–3815 (2006). [CrossRef]
  16. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010). [CrossRef] [PubMed]
  17. Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express18(8), 7763–7769 (2010). [CrossRef] [PubMed]
  18. L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si2N4 or Si waveguides,” IEEE Photon. Technol. Lett.22(23), 1744–1746 (2010). [CrossRef]
  19. R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layer for optical waveguide applications,” J. Electrochem. Soc.147(6), 2237–2241 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited