OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21643–21651

Scattering-phase theorem: anomalous diffraction by forward-peaked scattering media

Min Xu  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21643-21651 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The scattering-phase theorem states that the values of scattering and reduced scattering coefficients of the bulk random media are proportional to the variance of the phase and the variance of the phase gradient, respectively, of the phase map of light passing through one thin slice of the medium. We report a new derivation of the scattering phase theorem and provide the correct form of the relation between the variance of phase gradient and the reduced scattering coefficient. We show the scattering-phase theorem is the consequence of anomalous diffraction by a thin slice of forward-peaked scattering media. A new set of scattering-phase relations with relaxed requirement on the thickness of the slice are provided. The condition for the scattering-phase theorem to be valid is discussed and illustrated with simulated data. The scattering-phase theorem is then applied to determine the scattering coefficient μs, the reduced scattering coefficient μs, and the anisotropy factor g for polystyrene sphere and Intralipid-20% suspensions with excellent accuracy from quantitative phase imaging of respective thin slices. The spatially-resolved μs, μs and g maps obtained via such a scattering-phase relationship may find general applications in the characterization of the optical property of homogeneous and heterogeneous random media.

© 2011 OSA

OCIS Codes
(180.3170) Microscopy : Interference microscopy
(290.5820) Scattering : Scattering measurements
(290.7050) Scattering : Turbid media
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: July 28, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 21, 2011
Published: October 19, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Min Xu, "Scattering-phase theorem: anomalous diffraction by forward-peaked scattering media," Opt. Express 19, 21643-21651 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. F. Cheong, S. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  2. Z. Wang, H. Ding, K. Tangella, and G. Popescu, “A scattering-phase theorem,” in Biomedical Optics (BIOMED) Topical Meeting and Tabletop Exhibit, p. BTuD111p (OSA, 2010).
  3. Z. Wang, H. Ding, and G. Popescu, “Scattering-phase theorem.” Opt. Lett. 36(7), 1215–1217 (2011). [CrossRef] [PubMed]
  4. M. Iftikhar, B. DeAngelo, G. Arzumanov, P. Shanley, Z. Xu, and M. Xu, “Characterizing scattering property of random media from phase map of a thin slice: the scattering-phase theorem and the intensity propagation equation approach,” in Optical Tomography and Spectroscopy of Tissue IX, B. J. Tromberg, A. G. Yodh, M. Tamura, E. M. Sevick-Muraca, and R. R. Alfano, eds., vol. 7896 of Proceedings of SPIE, p. 78961O (SPIE, Bellingham, WA, 2011).
  5. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy.” Opt. Lett. 23(11), 817–819 (1998). [CrossRef]
  6. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy.” J. Microsc. 214(1), 7–12 (2004). [CrossRef] [PubMed]
  7. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  8. W. S. Rockward, A. L. Thomas, B. Zhao, and C. A. DiMarzio, “Quantitative phase measurements using optical quadrature microscopy,” Appl. Opt. 47(10), 1684–1696 (2008). [CrossRef] [PubMed]
  9. S. S. Kou, L. Waller, G. Barbastathis, and C. J. R. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett. 35(3), 447–449 (2010). [CrossRef] [PubMed]
  10. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures,” Phys. Rev. Lett. 101(23), 238102 (2008). [CrossRef] [PubMed]
  11. S. H. Ma, Statistical Mechanics (World Scientific, 1985).
  12. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  13. The factor i appears in Eq. (2) and did not appear in anomalous diffraction by optically soft particles described by Hulst in Ref 12. This difference originates from the fact that the scattering wave into direction θ is proportional to −iS(θ) in the Hulst convention and S(θ) in the contemporary convention adopted here.
  14. S. A. Ackerman and G. L. Stephens, “The absorption of solar radiation by cloud droplets: an application of anomalous diffraction theory,” J. Atmos. Sci. 44(12), 1574–1588 (1987). [CrossRef]
  15. P. Chýlek and J. D. Klett, “Extinction cross sections of nonspherical particles in the anomalous diffraction approximation,” J. Opt. Soc. Am. A 8, 274–281 (1991). [CrossRef]
  16. M. Xu, M. Lax, and R. R. Alfano, “Light anomalous diffraction using geometrical path statistics of rays and Gaussian ray approximation,” Opt. Lett. 28, 179–181 (2003). [CrossRef] [PubMed]
  17. P. Yang, Z. Zhang, B. Baum, H.-L. Huang, and Y. Hu, “A new look at anomalous diffraction theory (ADT): Algorithm in cumulative projected-area distribution domain and modified ADT,” J. Quant. Spectrosc. Radiat. Transf. 89, 421–442 (2004). [CrossRef]
  18. M. Xu and A. Katz, Light Scattering Reviews, vol. III, chap. Statistical Interpretation of Light Anomalous Diffraction by Small Particles and its Applications in Bio-agent Detection and Monitoring, pp. 27–68 (Springer, 2008). [CrossRef]
  19. P. Guttorp and T. Gneiting, “On the Whittle-Matrn correlation family,” Tech. Rep. NRCSE-TRS No. 080, NRCSE, University of Washington (2005).
  20. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996). [CrossRef] [PubMed]
  21. V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1(3), 1034–1046 (2010), URL http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-3-1034 .
  22. M. Xu, T. T. Wu, and J. Y. Qu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,” J. Biomed. Opt. 13, 038802 (2008).
  23. T. T. Wu, J. Y. Qu, and M. Xu, “Unified Mie and fractal scattering by biological cells and subcellular structures,” Opt. Lett. 32, 2324–2326 (2007). [CrossRef] [PubMed]
  24. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051–3053 (2005). [CrossRef] [PubMed]
  25. M. Schlather, “An introduction to positive-definite functions and to unconditional simulation of random fields,” Tech. Rep. ST-99-10, Lancaster University (1999).
  26. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]
  27. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van GemertJ, “Light scattering in Intralipid-10% in the wavelength range of 400–1100nm,” Appl. Opt. 30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  28. A. Giusto, R. Saija, M. A. Iat, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt. 42(21), 4375–4380 (2003). [CrossRef] [PubMed]
  29. M. Xu, M. Alrubaiee, and R. R. Alfano, “Fractal mechanism of light scattering for tissue optical biopsy,” in Optical Biopsy VI, R. R. Alfano and A. Katz, eds., vol. 6091 of Proceedings of SPIE, p. 60910E (2006).
  30. S. Menon, Q. Su, and R. Grobe, “Determination of g and μ using multiply scattered light in turbid media,” Phys. Rev. Lett. 94, 153904 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 2 Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited