OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21652–21657

Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling

Xing-Ri Jin, Jinwoo Park, Haiyu Zheng, Seongjae Lee, YoungPak Lee, Joo Yull Rhee, Ki Won Kim, H. S. Cheong, and Won Ho Jang  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21652-21657 (2011)
http://dx.doi.org/10.1364/OE.19.021652


View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a planar metamaterial, which consists of two silver strips, we theoretically demonstrate the plasmonic electromagnetically-induced transparency (EIT)-like spectral response at optical frequencies. The two silver strips serve as the bright modes, and are excited strongly by the incident wave. Based on the weak hybridization between the two bright modes, a highly-dispersive plasmonic EIT-like spectral response appears in our scheme. Moreover, the group index is higher than that of another scheme which utilizes the strong coupling between the bright and dark modes.

© 2011 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: July 27, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: October 5, 2011
Published: October 19, 2011

Citation
Xing-Ri Jin, Jinwoo Park, Haiyu Zheng, Seongjae Lee, YoungPak Lee, Joo Yull Rhee, Ki Won Kim, H. S. Cheong, and Won Ho Jang, "Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling," Opt. Express 19, 21652-21657 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21652


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77 (2001). [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667 (1998). [CrossRef]
  3. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett.92, 107401 (2004). [CrossRef] [PubMed]
  4. H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett.6, 2104 (2006). [CrossRef] [PubMed]
  5. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature (London)452, 728 (2008). [CrossRef]
  6. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B80, 035104 (2009). [CrossRef]
  7. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater.20, 4521 (2008). [CrossRef]
  8. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102, 053901 (2009). [CrossRef] [PubMed]
  9. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B79, 085111 (2009). [CrossRef]
  10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008). [CrossRef] [PubMed]
  11. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8, 758 (2009). [CrossRef] [PubMed]
  12. X. R. Jin, Y. Lu, H. Zheng, Y. P. Lee, J. Y. Rhee, and W. H. Jang, “Plasmonic electromagnetically-induced transparency in symmetric structures,” Opt. Express18, 13396 (2010). [CrossRef] [PubMed]
  13. Y. Lu, J. Y. Rhee, W. H. Jang, and Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express18, 20912 (2010). [CrossRef] [PubMed]
  14. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express17, 5595 (2009). [CrossRef] [PubMed]
  15. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H.-T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107, 093104 (2010). [CrossRef]
  16. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express18, 17187 (2010). [CrossRef] [PubMed]
  17. Z. -G. Dong, H. Liu, J. X. Cao, T. Li, S. -M. Wang, S. -N Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett.97, 114101 (2010). [CrossRef]
  18. Z. -G. Dong, H. Liu, M. -X. Xu, T. Li, S. -M. Wang, S. -N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express18, 18229 (2010).
  19. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express19, 5970 (2011). [CrossRef] [PubMed]
  20. X. -R. Jin, Y. Lu, H. Zheng, Y. P. Lee, J. Y. Rhee, K. W. Kim, and W. H. Jang, “Plasmonic electromagnetically-induced transparency in metamaterial based on second-order plasmonic resonance,” Opt. Commun.284, 4766 (2011). [CrossRef]
  21. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99, 147401 (2007). [CrossRef] [PubMed]
  22. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101, 253903 (2008). [CrossRef] [PubMed]
  23. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94, 211902 (2009). [CrossRef]
  24. S.-Y. Chiam, R. Singh, C. Rockstuhl, F Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B80, 153103 (2009). [CrossRef]
  25. C.-Y. Chen, I.-W. Un, N.-H. Tai, and T.-J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express17, 15372 (2009). [CrossRef] [PubMed]
  26. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express19, 8912 (2011). [CrossRef] [PubMed]
  27. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. I. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104, 243902 (2010). [CrossRef] [PubMed]
  28. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1099 (1983). [CrossRef] [PubMed]
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 (2003). [CrossRef] [PubMed]
  30. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110, 18243 (2006).
  31. A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett.11, 3694 (2011). [CrossRef] [PubMed]
  32. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E71, 036617 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited