OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21760–21767

Transient radiation-induced effects on solid core microstructured optical fibers

S. Girard, Y. Ouerdane, M. Bouazaoui, C. Marcandella, A. Boukenter, L. Bigot, and A. Kudlinski  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21760-21767 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report transient radiation-induced effects on solid core microstructured optical fibers (MOFs). The kinetics and levels of radiation-induced attenuation (RIA) in the visible and near-infrared part of the spectrum (600 nm-2000 nm) were characterized. It is found that the two tested MOFs, fabricated by the stack-and-draw technique, present a good radiation tolerance. Both have similar geometry but one has been made with pure-silica tubes and the other one with Fluorine-doped silica tubes. We compared their pulsed X-ray radiation sensitivities to those of different classes of conventional optical fibers with pure-silica-cores or cores doped with Phosphorus or Germanium. The pulsed radiation sensitivity of MOFs seems to be mainly governed by the glass composition whereas their particular structure does not contribute significantly. Similarly for doped silica fibers, the measured spectral dependence of RIA for the MOFs cannot be correctly reproduced with the various absorption bands associated with the Si-related defects identified in the literature. However, our analysis confirms the preponderant role of self-trapped holes with their visible and infrared absorption bands in the transient behaviors of pure-silica of F-doped fibers. The results of this study showed that pure-silica or fluorine-doped MOFs, which offers specific advantages compared to conventional fibers, are promising for use in harsh environments due to their radiation tolerance.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(300.1030) Spectroscopy : Absorption

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 29, 2011
Manuscript Accepted: August 5, 2011
Published: October 20, 2011

S. Girard, Y. Ouerdane, M. Bouazaoui, C. Marcandella, A. Boukenter, L. Bigot, and A. Kudlinski, "Transient radiation-induced effects on solid core microstructured optical fibers," Opt. Express 19, 21760-21767 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Girard, J. Keurinck, Y. Ouerdane, J.-P. Meunier, and A. Boukenter, “Gamma-rays and pulsed X-ray radiation responses of germanosilicate single-mode optical fibers: influence of cladding codopants,” J. Lightwave Technol. 22(8), 1915–1922 (2004). [CrossRef]
  2. E. J. Friebele, P. C. Schultz, and M. E. Gingerich, “Compositional effects on the radiation response of Ge-doped silica-core optical fiber waveguides,” Appl. Opt. 19(17), 2910–2916 (1980). [CrossRef] [PubMed]
  3. S. Girard, Y. Ouerdane, A. Boukenter, and J.-P. Meunier, “Transient radiation responses of silica-based optical fibers: influence of modified chemical vapor deposition process parameters,” J. Appl. Phys. 99(2), 023104 (2006). [CrossRef]
  4. D. L. Griscom, “Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation,” J. Appl. Phys. 77(10), 5008–5013 (1995). [CrossRef]
  5. E. J. Friebele and M. E. Gingerich, “Photobleaching effects in optical fiber waveguides,” Appl. Opt. 20(19), 3448–3452 (1981). [CrossRef] [PubMed]
  6. H. Henschel, O. Kohn, and H. U. Schmidt, “Radiation hardening of optical fibre links by photobleaching with light of shorter wavelength,” IEEE Trans. Nucl. Sci. 43(3), 1050–1056 (1996). [CrossRef]
  7. A. T. Ramsey, W. Tighe, J. Bartolick, and P. D. Morgan, “Radiation effects on heated optical fibers,” Rev. Sci. Instrum. 68(1), 632–635 (1997). [CrossRef]
  8. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  9. S. Girard, J. Baggio, and J.-L. Leray, “Radiation-induced effects in a new class of optical waveguides: the air-guiding photonic crystal fibers,” IEEE Trans. Nucl. Sci. 52(6), 2683–2688 (2005). [CrossRef]
  10. G. Cheymol, H. Long, J. F. Villard, and B. Brichard, “High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor,” IEEE Trans. Nucl. Sci. 55(4), 2252–2258 (2008). [CrossRef]
  11. H. Henschel, J. Kuhnhenn, and U. Weinand, “High radiation hardness of a hollow core photonic bandgap fiber,” in 8th European Conference on Radiation and Its Effects on Components and Systems, RADECS 2005, paper LN4 (2005).
  12. S. Girard, A. Yahya, A. Boukenter, Y. Ouerdane, J.-P. Meunier, R. E. Kristiansen, and G. Vienne, “Gamma-radiation-induced attenuation in photonic crystal fibre,” IEE Electron. Lett. 38(20), 1169–1171 (2002). [CrossRef]
  13. A. F. Kosolapov, I. V. Nikolin, A. L. Tomashuk, S. L. Semjonov, and M. O. Zabezhailov, “Optical losses in as-prepared and gamma-irradiated microstructured silica-core optical fibers,” Inorg. Mater. 40(11), 1229–1232 (2004). [CrossRef]
  14. S. Girard, J. Baggio, J.-L. Leray, J.-P. Meunier, A. Boukenter, and Y. Ouerdane, “Vulnerability analysis of optical fibers for Laser Megajoule facility: preliminary studies,” IEEE Trans. Nucl. Sci. 52(5), 1497–1503 (2005). [CrossRef]
  15. C. Lion, “The LMJ program: an overview,” J. Phys.: Conf. Ser. 244(1), 012003 (2010). [CrossRef]
  16. A. Johan, B. Azaïs, C. Malaval, G. Raboisson, and M. Roche, “ASTERIX, un nouveau moyen pour la simulation des effets de débit de dose sur l’électronique,” Ann. Phys. 14, 379–393 (1989).
  17. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983). [CrossRef]
  18. J. Bisutti, “Etude de la transmission du signal sous irradiation transitoire dans les fibres optiques,” Thèse de Doctorat (Université de Saint-Etienne, 2010).
  19. D. L. Griscom, “Self-trapped holes in pure-silica glass: a history of their discovery and characterization and an example of their critical significance to industry,” J. Non-Cryst. Solids 352(23-25), 2601–2617 (2006). [CrossRef]
  20. S. Girard, D. L. Griscom, J. Baggio, B. Brichard, and F. Berghmans, “Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: influence of self-trapped holes,” J. Non-Cryst. Solids 352(23-25), 2637–2642 (2006). [CrossRef]
  21. P. V. Chernov, E. M. Dianov, V. N. Karpechev, L. S. Kornienko, I. O. Morozova, A. O. Rybaltovskii, V. O. Sokolov, and V. B. Sulimov, “Spectroscopic manifestations of self-trapped holes in silica. Theory and experiment,” Phys. Status Solidi B 115, 663–675 (1989).
  22. E. Régnier, I. Flammer, S. Girard, F. Gooijer, F. Achten, and G. Kuyt, “Low-dose radiation-induced attenuation at InfraRed wavelengths for P-doped, Ge-doped and pure silica-core optical fibres,” IEEE Trans. Nucl. Sci. 54(4), 1115–1119 (2007). [CrossRef]
  23. Y. Sasajima and K. Tanimura, “Optical transitions of self-trapped holes in amorphous SiO2,” Phys. Rev. B 68(1), 014204 (2003). [CrossRef]
  24. M. Yamaguchi, K. Saito, and A. J. Ikushima, “Fictive-temperature-dependence of photoinduced self-trapped holes in a-SiO2,” Phys. Rev. B 68(15), 153204 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited