OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21768–21785

Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination

Igor Buzalewicz, Alina Wieliczko, and Halina Podbielska  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21768-21785 (2011)
http://dx.doi.org/10.1364/OE.19.021768


View Full Text Article

Enhanced HTML    Acrobat PDF (1824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The novel optical system based on converging spherical wave illumination for analysis of bacteria colonies diffraction patterns, is proposed. The complex physical model of light transformation on bacteria colonies in this system, is presented. Fresnel diffraction patterns of bacteria colonies Escherichia coli, Salmonella enteritidis, Staphylococcus aureus grown in various conditions, were examined. It was demonstrated that the proposed system enables the characterization of morphological changes of colony structures basing on the changes of theirs Fresnel diffraction patterns.

© 2011 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(290.2558) Scattering : Forward scattering

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 7, 2011
Revised Manuscript: September 10, 2011
Manuscript Accepted: October 2, 2011
Published: October 20, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Igor Buzalewicz, Alina Wieliczko, and Halina Podbielska, "Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination," Opt. Express 19, 21768-21785 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21768


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Christen, “Bioterrorism and waterborne pathogens: how big is the threat?” Environ. Sci. Technol.35(19), 396A–397A (2001). [CrossRef] [PubMed]
  2. A. M. Nicol, Ch. Hurrell, W. McDowall, K. Bartlett, and N. Elmieh, “Communicating the risks of a new, emerging pathogen: the case of Cryptococcus gattii,” Risk Anal.28(2), 373–386 (2008). [CrossRef] [PubMed]
  3. C. Dennis, “The bugs of war,” Nature411(6835), 232–235 (2001). [CrossRef] [PubMed]
  4. T. Ersek and Z. Nagy, “Species hybrids in the genus Phytophthora with emphasis on the alder pathogen Phytophthora alni: a review,” Eur. J. Plant Pathol.22(1), 31–39 (2010).
  5. S. B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nat. Med.10(12Suppl), S122–S129 (2004). [CrossRef] [PubMed]
  6. S. G. B. Amyes, “The rise in bacterial resistance,” Br. Med. J.320(7229), 199–200 (2000). [CrossRef] [PubMed]
  7. A. S. Colsky, R. S. Kirsner, and F. A. Kerdel, “Analysis of antibiotic susceptibilities of skin wound flora in hospitalized dermatology patients. The crisis of antibiotic resistance has come to the surface,” Arch. Dermatol.134(8), 1006–1009 (1998). [CrossRef] [PubMed]
  8. http://www.idph.state.ia.us/adper/common/pdf/abx/tab9_niaid_resistance.pdf
  9. A. C. Samuels, A. P. Snyder, D. K. Emge, D. Amant, J. Minter, M. Campbell, and A. Tripathi, “Classification of select category A and B bacteria by Fourier transform infrared spectroscopy,” Appl. Spectrosc.63(1), 14–24 (2009). [CrossRef] [PubMed]
  10. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999). [CrossRef]
  11. Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett.24(2), 116–118 (1999). [CrossRef] [PubMed]
  12. S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001). [CrossRef] [PubMed]
  13. R. G. Pinnick, S. C. Hill, S. Niles, D. M. Garvey, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. V. Bronk, B. T. Chen, C.-S. Orr, and G. Feather, “Real–time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol.3(4-5), 221–239 (1999). [CrossRef]
  14. A. Maninen, M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg, “Instrumentation for measuring fluorescence cross-sections from airborne microsized particle,” Appl. Opt.47(7), 110–115 (2008).
  15. S. Sarasanandarajah, J. Kunnil, B. V. Bronk, and L. Reinisch, “Two-dimensional multiwavelength fluorescence spectra of dipicolinic acid and calcium dipicolinate,” Appl. Opt.44(7), 1182–1187 (2005). [CrossRef] [PubMed]
  16. A. Alimova, A. Katz, P. Gottlieb, and R. R. Alfano, “Proteins and dipicolinic acid released during heat shock activation of Bacillus subtilis spores probed by optical spectroscopy,” Appl. Opt.45(3), 445–450 (2006). [CrossRef] [PubMed]
  17. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt.36(4), 958–967 (1997). [CrossRef] [PubMed]
  18. A. Thomas, D. Sands, D. Baum, L. To, and G. O. Rubel, “Emission wavelength dependence of fluorescence lifetimes of bacteriological spores and pollens,” Appl. Opt.45(25), 6634–6639 (2006). [CrossRef] [PubMed]
  19. L. J. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta, B At. Spectrosc.57(7), 1109–1113 (2002). [CrossRef]
  20. S. Morel, N. Leone, P. Adam, and J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt.42(30), 6184–6191 (2003). [CrossRef] [PubMed]
  21. J. Thomason, “Spectroscopy takes security into the field,” Photon. Spectra38, 83–85 (2004).
  22. R. T. Noble and S. B. Weisberg, “A review of technologies for rapid detection of bacteria in recreational waters,” J. Water Health3(4), 381–392 (2005). [PubMed]
  23. D. L. Rosen, “Bacterial endospores detection using photoluminescence from terbium dipicolinate,” Rev. Anal. Chem.18(1-2), 1–22 (1999). [CrossRef]
  24. D. L. Rosen, “Airborne bacterial endospores detected by use of an impinger containing aqueous terbium chloride,” Appl. Opt.45(13), 3152–3157 (2006). [CrossRef] [PubMed]
  25. S. J. Mechery, X. J. Zhao, L. Wang, L. R. Hilliard, A. Munteanu, and W. Tan, “Using bioconjugated nanoparticles to monitor E. coli in a flow channel,” Chem. Asian J.1(3), 384–390 (2006). [CrossRef] [PubMed]
  26. W. Lian, S. A. Litherland, H. Badrane, W. Tan, D. Wu, H. V. Baker, P. A. Gulig, D. V. Lim, and S. Jin, “Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles,” Anal. Biochem.334(1), 135–144 (2004). [CrossRef] [PubMed]
  27. J. Homola, J. Dostálek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol.75(1-2), 61–69 (2002). [CrossRef] [PubMed]
  28. P. Leonard, S. Hearty, J. Quinn, and R. O’Kennedy, “A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance,” Biosens. Bioelectron.19(10), 1331–1335 (2004). [CrossRef] [PubMed]
  29. A. Subramanian, J. Irudayaraj, and T. Ryan, “A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7,” Biosens. Bioelectron.21(7), 998–1006 (2006). [CrossRef] [PubMed]
  30. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt.7(10), 1879–1896 (1968). [CrossRef] [PubMed]
  31. P. H. Kaye, J. E. Barton, E. Hirst, and J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,” Appl. Opt.39(21), 3738–3745 (2000). [CrossRef] [PubMed]
  32. Y. L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, “Characterizing and monitoring respiratory aerosols by light scattering,” Opt. Lett.28(8), 589–591 (2003). [CrossRef] [PubMed]
  33. S. Holler, S. Zomer, G. F. Crosta, Y. L. Pan, R. K. Chang, and J. R. Bottiger, “Multivariate analysis and classification of two-dimensional angular optical scattering patterns from aggregates,” Appl. Opt.43(33), 6198–6206 (2004). [CrossRef] [PubMed]
  34. G. E. Fernandes, Y. L. Pan, R. K. Chang, K. Aptowicz, and R. G. Pinnick, “Simultaneous forward- and backward-hemisphere elastic-light-scattering patterns of respirable-size aerosols,” Opt. Lett.31(20), 3034–3036 (2006). [CrossRef] [PubMed]
  35. J. C. Auger, K. B. Aptowicz, R. G. Pinnick, Y.-L. Pan, and R. K. Chang, “Angularly resolved light scattering from aerosolized spores: observations and calculations,” Opt. Lett.32(22), 3358–3360 (2007). [CrossRef] [PubMed]
  36. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt.46(17), 3639–3648 (2007). [CrossRef] [PubMed]
  37. M. Venkatapathi, B. Rajwa, K. Ragheb, P. P. Banada, T. Lary, J. P. Robinson, and E. D. Hirleman, “High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics,” Appl. Opt.47(5), 678–686 (2008). [CrossRef] [PubMed]
  38. P. P. Banada, S. Guo, B. Bayraktar, E. Bae, B. Rajwa, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species,” Biosens. Bioelectron.22(8), 1664–1671 (2007). [CrossRef] [PubMed]
  39. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Analysis of time-resolved scattering from macroscale bacterial colonies,” J. Biomed. Opt.13(1), 014010 (2008). [CrossRef] [PubMed]
  40. P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Label-free detection of multiple bacterial pathogens using light-scattering sensor,” Biosens. Bioelectron.24(6), 1685–1692 (2009). [CrossRef] [PubMed]
  41. E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt.15(4), 045001 (2010). [CrossRef] [PubMed]
  42. E. Bae, A. Aroonnual, A. K. Bhunia, and E. D. Hirleman, “On the sensitivity of forward scattering patterns from bacterial colonies to media composition,” J. Biophotonics4(4), 236–243 (2011). [CrossRef] [PubMed]
  43. I. Buzalewicz, K. Wysocka, and H. Podbielska, “Exploiting of optical transforms for bacteria evaluation in vitro,” Proc. SPIE7371, 73711H, 73711H-6 (2009). [CrossRef]
  44. I. Buzalewicz, K. Wysocka-Król, and H. Podbielska, “Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms,” Opt. Express18(12), 12992–13005 (2010). [CrossRef] [PubMed]
  45. I. Buzalewicz, K. Wysocka–Król, K. Kowal, and H. Podbielska, “Evaluation of antibacterial agents efficiency,” in Information Technologies in Biomedicine 2, E. Pietka, J. Kawa ed. (Springer-Verlag, 2010).
  46. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Robert & Company Publishers, 2005).
  47. J. D. Gaskill, Linear Systems, Fourier Transform and Optics, (John Wiley & Sons, 1978).
  48. D. Joyeux and S. Lowenthal, “Optical Fourier transform: what is the optimal setup?” Appl. Opt.21(23), 4368–4372 (1982). [CrossRef] [PubMed]
  49. M. A. Bees, P. Andresén, E. Mosekilde, and M. Givskov, “The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens,” J. Math. Biol.40(1), 27–63 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited