OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21818–21831

Modeling excitation-dependent bandstructure effects on InGaN light-emitting diode efficiency

Weng W. Chow  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21818-21831 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bandstructure properties in wurtzite quantum wells can change appreciably with changing carrier density because of screening of quantum-confined Stark effect. An approach for incorporating these changes in an InGaN light-emitting-diode model is described. Bandstructure is computed for different carrier densities by solving Poisson and k·p equations in the envelop approximation. The information is used as input in a dynamical model for populations in momentum-resolved electron and hole states. Application of the approach is illustrated by modeling device internal quantum efficiency as a function of excitation.

© 2011 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

Original Manuscript: August 16, 2011
Revised Manuscript: September 22, 2011
Manuscript Accepted: September 22, 2011
Published: October 20, 2011

Weng W. Chow, "Modeling excitation-dependent bandstructure effects on InGaN light-emitting diode efficiency," Opt. Express 19, 21818-21831 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Technol. 3, 160–175 (2007). [CrossRef]
  2. M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507–183510 (2007). [CrossRef]
  3. Y. C. Shen, G. O. Müller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101–141101 (2007). [CrossRef]
  4. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinvovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40, 605–610 (2006). [CrossRef]
  5. S. F. Chichibu, T. Azuhata, M. Sugiyama, T. Kitamura, Y. Ishida, H. Okumurac, H. Nakanishi, T. Sota, and T. Mukai, “Optical and structural studies in InGaN quantum well structure laser diodes,” J. Vac. Sci. Technol. B 19, 2177–2183 (2001). [CrossRef]
  6. I. A. Pope, P. M. Smowton, P. Blood, and J. D. Thompson, “Carrier leakage in InGaN quantum well light-emitting diodes emitting at 480nm,” Appl. Phys. Lett. 82, 2755–2757 (2003). [CrossRef]
  7. H.-Y Ryu, H.-S. Kim, and J.-I. Shim, “Rate equation analysis of efficiency droop in InGaN light-emitting diodes,” Appl. Phys. Lett. 95, 081114–081117 (2009). [CrossRef]
  8. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the important of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92, 261103–261105 (2008). [CrossRef]
  9. K. T. Dellaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94, 191109–191111 (2009). [CrossRef]
  10. A. Bykhovshi, B. Gelmonst, and M. Shur, “The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure,” J. Appl. Phys. 74, 6734–6739 (1993). [CrossRef]
  11. J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangleiter, “Reduction of oscillator strength due to piezoelectric fields in GaN/AlGaN quantum wells,” Phys. Rev. B 57, R9435–R9438 (1998). [CrossRef]
  12. W. W. Chow, M. H. Crawford, J. Y. Tsao, and M. Kneissl, “Internal efficiency of InGaN light-emitting diodes: beyond a quasiequilibrium model,” Appl. Phys. Lett. 97, 121105–121107 (2010). [CrossRef]
  13. S. L. Chuang and C. S. Chang, “k · p method for strained wurtzite semiconductors,” Phys. Rev. B 54, 2491–2504 (1996). [CrossRef]
  14. E. Jaynes and F. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963). [CrossRef]
  15. W. W. Chow, H. C. Schneider, S. W. Koch, C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Nonequilibrium model for semiconductor laser modulation response,” IEEE J. Quantum Electron. 38, 402–409 (2002). [CrossRef]
  16. I. Waldmueller, W. W. Chow, M. C. Wanke, and E. W. Young, “Non-equilibrium many-body theory of intersub-band lasers,” IEEE J. Quantum Electron. 42, 292–301 (2006). [CrossRef]
  17. W. W. Chow, A. F. Wright, A. Girndt, F. Jahnke, and S. W. Koch, “Microscopic theory of gain for an In-GaN/AlGaN quantum well laser,” Appl. Phys. Lett. 71, 2608–2610 (1997). [CrossRef]
  18. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer, 1999).
  19. H. Zhao, G. Liu, J. Zhang, J. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19, A991–A1007 (2011). [CrossRef] [PubMed]
  20. W. W. Chow, A. Knorr, and S. W. Koch, “Theory of laser gain in group-III nitrides,” Appl. Phys. Lett. 67, 754–756 (1995). [CrossRef]
  21. W. W. Chow, A. F. Wright, and J. S. Nelson, “Theoretical study of room temperate optical gain in GaN strained quantum wells,” Appl. Phys. Lett. 68, 296–298 (1996). [CrossRef]
  22. S.-H. Park, D. Ahn, J. Park, and T -T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum-well structures with Ga- and N-Faces,” Jpn. J. Appl. Phys. 50, 072101–07214 (2011). [CrossRef]
  23. S. J. Jenkins, G. P. Srivastava, and J. C. Inkson, “Simple approach to self-energy corrections in semiconductors and insulators,” Phys. Rev. B 48, 4388–4397 (1993). [CrossRef]
  24. A. F. Wright and J. S. Nelson, “Consistent structural properties for AlN, GaN, and InN,” Phys. Rev. B 51, 7866–7869 (1995). [CrossRef]
  25. S. H. Wei and A. Zunger, “Valence band splittings and band offsets of AlN, GaN, and InN,” Appl. Phys. Lett. 69, 2719–2711 (1996). [CrossRef]
  26. O. Ambacher, “Growth and applications of Group III-nitrides,” J. Phys. D: Appl. Phys. 31, 2653–2710 (1998). [CrossRef]
  27. A. Armstrong, Sandia National Laboratories, Albuquerque, NM 87185 (personal communication, 2010).
  28. S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis, A. M. Fishcer, and F. A. Ponce, “Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer,” Appl. Phys. Lett. 96, 221105–221107 (2010). [CrossRef]
  29. J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96, 221106–221108 (2010). [CrossRef]
  30. Y. Y. Kudryk and A. V. Zinovchuk, “Efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with nonuniform current spreading,” Semicond. Sci. Technol. 26, 095007–095011 (2011). [CrossRef]
  31. C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, “A first-principles fully space-time resolved model of a semiconductor laser,” Quantum Semiclassical Opt. 9, 681–691 (1997). [CrossRef]
  32. L. V. Keldysh, “Behaviour of non-metallic crystals in strong electric fields,” Sov. Phys. JETP 6, 763–770 (1958).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited