OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21842–21848

Reflection of nanosecond Nd:YAG laser pulses in ablation of metals

O. Benavides, O. Lebedeva, and V. Golikov  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21842-21848 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hemispherical total reflectivity of copper, nickel, and tungsten in ablation by nanosecond Nd:YAG laser pulses in air of atmospheric pressure is experimentally studied as a function of laser fluence in the range of 0.1–100 J/cm2. Our experiment shows that at laser fluences below the plasma formation threshold the reflectivity of mechanically polished metals remains virtually equal to the table room-temperature reflectivity values. The hemispherical total reflectivity of the studied metals begins to drop at a laser fluence of the plasma formation threshold. With increasing laser fluence above the plasma formation threshold the reflectivity sharply decreases to a low value and then remains unchanged with further increasing laser fluence. Computation of the surface temperature at the plasma formation threshold fluence reveals that its value is substantially below the melting point that indicates an important role of the surface nanostructural defects in the plasma formation on a real sample due to their enhanced heating caused by both plasmonic absorption and plasmonic nanofocusing.

© 2011 OSA

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(140.3390) Lasers and laser optics : Laser materials processing
(160.0160) Materials : Materials
(160.3900) Materials : Metals
(240.0240) Optics at surfaces : Optics at surfaces

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 31, 2011
Manuscript Accepted: September 20, 2011
Published: October 20, 2011

O. Benavides, O. Lebedeva, and V. Golikov, "Reflection of nanosecond Nd:YAG laser pulses in ablation of metals," Opt. Express 19, 21842-21848 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).
  2. D. B. Chrisey and G. K. Hubler, eds., Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  3. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011). [CrossRef]
  4. L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).
  5. R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985). [CrossRef]
  6. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004). [CrossRef]
  7. V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006). [CrossRef]
  8. V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008). [CrossRef] [PubMed]
  9. S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008). [CrossRef]
  10. S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006). [CrossRef]
  11. S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010). [CrossRef] [PubMed]
  12. A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009). [CrossRef]
  13. N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010). [CrossRef]
  14. A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).
  15. D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009). [CrossRef]
  16. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009). [CrossRef] [PubMed]
  17. A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996). [CrossRef]
  18. J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003). [CrossRef]
  19. A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005). [CrossRef] [PubMed]
  20. A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).
  21. N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).
  22. J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976). [CrossRef]
  23. T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975). [CrossRef]
  24. Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).
  25. A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985). [CrossRef]
  26. A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011). [CrossRef]
  27. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006). [CrossRef]
  28. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants 11th ed. (Longmans, 1956).
  29. B. T. Barnes, “Optical constants of incandescent refractory metals,” J. Opt. Soc. Am. 56(11), 1546–1550 (1966). [CrossRef]
  30. J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, 1971).
  31. S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).
  32. S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997). [CrossRef]
  33. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005). [CrossRef]
  34. A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008). [CrossRef]
  35. D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007). [CrossRef]
  36. S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011). [CrossRef]
  37. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, Inc., 1989).
  38. S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007). [CrossRef]
  39. N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008). [CrossRef]
  40. R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990). [CrossRef] [PubMed]
  41. A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994). [CrossRef] [PubMed]
  42. J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995). [CrossRef]
  43. S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999). [CrossRef]
  44. A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999). [CrossRef]
  45. N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001). [CrossRef]
  46. N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).
  47. Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005). [CrossRef]
  48. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011). [CrossRef]
  49. T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002). [CrossRef] [PubMed]
  50. M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited