OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21956–21976

Time reversal optical tomography: locating targets in a highly scattering turbid medium

Binlin Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21956-21976 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A time reversal optical tomography (TROT) method for near-infrared (NIR) diffuse optical imaging of targets embedded in a highly scattering turbid medium is presented. TROT combines the basic symmetry of time reversal invariance and subspace-based signal processing for retrieval of target location. The efficacy of TROT is tested using simulated data and data obtained from NIR imaging experiments on absorptive and scattering targets embedded in Intralipid-20% suspension in water, as turbid medium. The results demonstrate the potential of TROT for detecting and locating small targets in a turbid medium, such as, breast tumors in early stages of growth.

© 2011 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3830) Medical optics and biotechnology : Mammography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(110.0113) Imaging systems : Imaging through turbid media
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 31, 2011
Revised Manuscript: September 29, 2011
Manuscript Accepted: October 1, 2011
Published: October 21, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics

Binlin Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, "Time reversal optical tomography: locating targets in a highly scattering turbid medium," Opt. Express 19, 21956-21976 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005). [CrossRef] [PubMed]
  2. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20(5), 426–428 (1995). [CrossRef] [PubMed]
  3. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997). [CrossRef] [PubMed]
  4. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999). [CrossRef]
  5. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999). [CrossRef] [PubMed]
  6. B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003). [CrossRef]
  7. Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14(1), 325–342 (1997). [CrossRef]
  8. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993). [CrossRef] [PubMed]
  9. N. Kroman, J. Wohlfahrt, H. T. Mouridsen, and M. Melbye, “Influence of tumor location on breast cancer prognosis,” Int. J. Cancer 105(4), 542–545 (2003). [CrossRef] [PubMed]
  10. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007). [CrossRef] [PubMed]
  11. P. Mohajerani, A. A. Eftekhar, and A. Adibi, “Object localization in the presence of a strong heterogeneous background in fluorescent tomography,” J. Opt. Soc. Am. A 25(6), 1467–1479 (2008). [CrossRef] [PubMed]
  12. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004). [CrossRef] [PubMed]
  13. Q. Zhao, L. Ji, and T. Jiang, “Improving depth resolution of diffuse optical tomography with a layer-based sigmoid adjustment method,” Opt. Express 15(7), 4018–4029 (2007). [CrossRef] [PubMed]
  14. M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid medium using independent component analysis,” Appl. Phys. Lett. 87(19), 191112 (2005). [CrossRef]
  15. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006). [CrossRef]
  16. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005). [CrossRef] [PubMed]
  17. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008). [CrossRef]
  18. A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008). [CrossRef] [PubMed]
  19. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000). [CrossRef] [PubMed]
  20. Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003). [PubMed]
  21. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003). [CrossRef] [PubMed]
  22. W. Cai, M. Alrubaiee, S. K. Gayen, M. Xu, and R. R. Alfano, “Three-dimensional optical tomography of objects in turbid media using the round-trip matrix,” Proc. SPIE 5693, 4–9 (2005). [CrossRef]
  23. B. Wu, M. Alrubaiee, W. Cai, M. Xu, and S. K. Gayen, “Optical imaging of objects in turbid media using principal component analysis and time reversal matrix methods,” in Computational Optical Sensing and Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuC10. http://www.opticsinfobase.org/abstract.cfm?uri=COSI-2009-JTuC10
  24. B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Three dimensional time reversal optical tomography,” Proc. SPIE 7892, 78920G (2011). [CrossRef]
  25. C. Prada, F. Wu, and M. Fink, “The iterative time reversal mirror: a solution to self-focusing in the pulse echo mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991). [CrossRef]
  26. M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self-focusing in inhomogeneous media with time-reversal acoustic mirrors,” in IEEE Ultrasonics Symposium Proceedings (Montreal, Que., Canada, 1989), vol. 2, pp. 681–686.
  27. M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566 (1992). [CrossRef] [PubMed]
  28. M. Fink, “Time reversal mirrors,” J. Phys. D Appl. Phys. 26(9), 1333–1350 (1993). [CrossRef]
  29. C. Prada, L. Thomas, and M. Fink, “The iterative time reversal process: analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995). [CrossRef]
  30. A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-reversal-based imaging and inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 118(5), 3129–3138 (2005). [CrossRef]
  31. M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000). [CrossRef]
  32. W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998). [CrossRef]
  33. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007). [CrossRef] [PubMed]
  34. A. J. Devaney, “Super-resolution processing of multi-static data using time reversal and MUSIC” (2000). http://www.ece.neu.edu/faculty/devaney/ajd/preprints.htm .
  35. H. Lev-Ari and A. J. Devaney, “The time reversal techniques re-interpreted: subspace-based signal processing for multi-static target location,” in Proceedings of the 1st IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM '00), (Cambridge, MA, USA, 2000) pp. 509–513.
  36. S. K. Lehman and A. J. Devaney, “Transmission mode time-reversal super-resolution imaging,” J. Acoust. Soc. Am. 113(5), 2742–2753 (2003). [CrossRef] [PubMed]
  37. F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115(6), 3042–3047 (2004). [CrossRef]
  38. C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003). [CrossRef] [PubMed]
  39. P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34(4), 561–580 (1992). [CrossRef]
  40. E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets,” IEEE Trans. Image Process. 16(8), 1967–1984 (2007). [CrossRef] [PubMed]
  41. A. Ishimaru, “Diffusion of a pulse in densely distributed scatterers,” J. Opt. Soc. Am. 68(8), 1045–1050 (1978). [CrossRef]
  42. K. Furutsu, “Diffusion equation derived from the space-time transport equation,” J. Opt. Soc. Am. 70(4), 360–366 (1980). [CrossRef]
  43. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  44. S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950).
  45. A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory (Academic, New York, 1978).
  46. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009). [CrossRef]
  47. S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995). [CrossRef] [PubMed]
  48. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994). [CrossRef] [PubMed]
  49. M. Lax, V. Nayaramamurti, and R. C. Fulton, “Classical diffusion photon transport in a slab,” in Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, and A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp. 229–237.
  50. C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of the time reversal operator: detection and selective focusing on two scatterers,” J. Acoust. Soc. Am. 99(4), 2067–2076 (1996). [CrossRef]
  51. A. J. Devaney, “Time reversal imaging of obscured targets from multistatic data,” IEEE Trans. Antenn. Propag. 53(5), 1600–1610 (2005). [CrossRef]
  52. N. Bourbaki, Topological Vector Spaces (Springer, 1987).
  53. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  54. C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009). [CrossRef]
  55. S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008). [CrossRef] [PubMed]
  56. M. Xu, Y. Pu, and W. Wang, “Clean image synthesis and target numerical marching for optical imaging with backscattering light,” Biomed. Opt. Express 2(4), 850–857 (2011). [CrossRef] [PubMed]
  57. T. Nielsen, B. Brendel, R. Ziegler, M. van Beek, F. Uhlemann, C. Bontus, and T. Koehler, “Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid,” Appl. Opt. 48(10), D1–D13 (2009). [CrossRef] [PubMed]
  58. Y. Ardeshirpour, N. Biswal, A. Aguirre, and Q. Zhu, “Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents,” J. Biomed. Opt. 16(4), 046015 (2011). [CrossRef] [PubMed]
  59. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40(10), 1709–1729 (1995). [CrossRef] [PubMed]
  60. S. Hou, K. Solna, and H. Zhao, “Imaging of location and geometry for extended targets using the response matrix,” J. Comput. Phys. 199(1), 317–338 (2004). [CrossRef]
  61. F. K. Gruber and E. Marengo, “Reinterpretation and enhancement of signal-subspace-based imaging methods for extended scatterers,” SIAM J. Imaging Sci. 3(3), 434–461 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited