OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21977–21988

Theoretical and experimental study of laser radiation propagating in a medium with thermally induced birefringence and cubic nonlinearity

M. S. Kuzmina, M. A. Martyanov, A. K. Poteomkin, E. A. Khazanov, and A. A. Shaykin  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 21977-21988 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider a problem of laser radiation propagating in a medium with birefringence of two types: linear birefringence independent of intensity and polarization, and intensity and polarization dependent circular birefringence caused by cubic nonlinearity. It is shown theoretically and experimentally that the efficiency of the broadly employed method of linear depolarization compensation by means of a 90° polarization rotator decreases with increasing В-integral (nonlinear phase incursion induced by cubic nonlinearity). The accuracy of polarization transformation by means of a half-wave and a quarter-wave plate also decreases if В > 1. By the example of a λ/4 plate it is shown that this parasitic effect may be suppressed considerably by choosing an optimal angle of inclination of the optical axis of the plate.

© 2011 OSA

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: August 18, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: September 27, 2011
Published: October 21, 2011

M. S. Kuzmina, M. A. Martyanov, A. K. Poteomkin, E. A. Khazanov, and A. A. Shaykin, "Theoretical and experimental study of laser radiation propagating in a medium with thermally induced birefringence and cubic nonlinearity," Opt. Express 19, 21977-21988 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Khazanov and A. M. Sergeev, “Petawatt laser based on optical parametric amplifiers: their state and prospects,” Sov. Phys. Usp. 51(9), 969–974 (2008). [CrossRef]
  2. A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Sov. Phys. Usp. 54(1), 9–28 (2011). [CrossRef]
  3. W. Koechner, Solid-state laser engineering (Berlin: Springer, 1999).
  4. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of solid-state lasers (Leningrad: Mashinostroenie, 1986).
  5. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971). [CrossRef]
  6. L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1.Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979). [CrossRef]
  7. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10(3), 350–351 (1980). [CrossRef]
  8. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002). [CrossRef]
  9. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–124 (2005). [CrossRef]
  10. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002). [CrossRef] [PubMed]
  11. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002). [CrossRef] [PubMed]
  12. M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003). [CrossRef]
  13. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004). [CrossRef]
  14. A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005). [CrossRef]
  15. K. Sh. Mustaev, V. A. Serebrykov, and V. E. Yashin, JETP Lett. 14, 856–859 (1980).
  16. S. N. Vlasov, V. I. Kryzhanovskiĭ, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron. 12(1), 7–10 (1982). [CrossRef]
  17. Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett. 3, 86–89 (1966).
  18. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964). [CrossRef]
  19. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486 (1970).
  20. D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun. 21(2), 241–242 (1977). [CrossRef]
  21. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971). [CrossRef]
  22. M. S. Kochetkova, M. A. Martyanov, A. K. Poteomkin, and E. A. Khazanov, “Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity,” Opt. Express 18(12), 12839–12851 (2010). [CrossRef] [PubMed]
  23. G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3), 036622-1–036622-16 (2003).
  24. A. A. Kuzmin, E. A. Khazanov, and A. A. Shaykin, “Large-aperture Nd:glass laser amplifiers with high pulse repetition rate,” Opt. Express 19(15), 14223–14232 (2011). [CrossRef] [PubMed]
  25. A. K. Poteomkin, E. A. Khazanov, M. A. Martyanov, A. V. Kirsanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009). [CrossRef]
  26. A. P. Voitovich and V. N. Severikov, Lasers with anisotropic resonators (Minsk: Nauka e technika, 1988)
  27. W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969). [CrossRef]
  28. A. A. Jaecklin and M. Lietz, “Elimination of disturbing birefringence effects on faraday rotation,” Appl. Opt. 11(3), 617–621 (1972). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited