OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 21989–22003

Vertical junction silicon microdisk modulators and switches

Michael R. Watts, William A. Zortman, Douglas C. Trotter, Ralph W. Young, and Anthony L. Lentine  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 21989-22003 (2011)
http://dx.doi.org/10.1364/OE.19.021989


View Full Text Article

Enhanced HTML    Acrobat PDF (2569 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Vertical junction resonant microdisk modulators and switches have been demonstrated with exceptionally low power consumption, low-voltage operation, high-speed, and compact size. This paper reviews the progress of vertical junction microdisk modulators, provides detailed design data, and compares vertical junction performance to lateral junction performance. The use of a vertical junction maximizes the overlap of the depletion region with the optical mode thereby minimizing both the drive voltage and power consumption of a depletion-mode modulator. Further, the vertical junction enables contact to be made from the interior of the resonator and therein a hard outer wall to be formed that minimizes radiation in small diameter resonators, further reducing the capacitance and drive power of the modulator. Initial simple vertical junction modulators using depletion-mode operation demonstrated the first sub-100fJ/bit silicon modulators. With more intricate doping schemes and through the use of AC-coupled drive signals, 3.5μm diameter vertical junction microdisk modulators have recently achieved a communications efficiency of 3fJ/bit, making these modulators the smallest and lowest power modulators demonstrated to date, in any material system. Additionally, the demonstration was performed at 12.5Gb/s, required a peak-to-peak signal level of only 1V, and achieved bit-error-rates below 10−12 without requiring signal pre-emphasis. As an additional benefit to the use of interior contacts, higher-order active filters can be constructed from multiple vertical-junction modulators without interference of the electrodes. Doing so, we demonstrated second-order active high-speed bandpass switches with ~2.5ns switching speeds, and power penalties of only 0.4dB. Through the use of vertical junctions in resonant modulators, we have achieved the lowest power consumption, lowest voltage, and smallest silicon modulators demonstrated to date.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.4110) Optical devices : Modulators
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: August 19, 2011
Revised Manuscript: September 25, 2011
Manuscript Accepted: September 26, 2011
Published: October 21, 2011

Citation
Michael R. Watts, William A. Zortman, Douglas C. Trotter, Ralph W. Young, and Anthony L. Lentine, "Vertical junction silicon microdisk modulators and switches," Opt. Express 19, 21989-22003 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21989


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. E. Moore, “Cramming more components onto integrated circuits,” Electronics38(8), 114–117 (1965).
  2. International Technology Roadmap for Semiconductors, (ITRS 2009). http://www.itrs.net/links/2009ITRS/Home2009.htm .
  3. G. M. Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” in Proc. AFIPS (American Federation of Information Processing Societies) Spring Joint Computer Conference (Thomson Books, Washington, DC), Vol. 30, Atlantic City, NJ, April 18–20, 1967, pp. 483–485.
  4. M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer41(7), 33–38 (2008). [CrossRef]
  5. Exascale Computing Study: Technology Challenges in Achieving Exascale Systems, P. M. Kogge, ed. (University of Notre Dame CSE Department, 2008). http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf .
  6. D. E. Atkins, K. K. Droegemeier, S. I. Feldman, H. Garcia-Molina, M. L. Klein, D. G. Messerschmitt, P. Messina, J. P. Ostriker, and M. H. Wright, Revolutionizing Science and Engineering Through Cyberinfrastructure: Report on the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure (Arlington, VA: National Science Foundation, Jan. 2003). http://www.nsf.gov/cise/sci/reports/atkins.pdf .
  7. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  9. TT. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007). [CrossRef]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  11. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007). [CrossRef] [PubMed]
  12. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proc. 5th IEEE Int’l Conf. Group IV Photonics, Sorrento, Italy, Sept. 2008, pp. 4–6. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4638077 .
  13. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008). [CrossRef]
  14. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  15. W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Power High-Speed Silicon Microdisk Modulators,” in Proc. CLEO/QELS, Technical Digest (CD) (Optical Society of America, 2010), paper CThJ4. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5500977 .
  16. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett.35(19), 3246–3248 (2010). [CrossRef] [PubMed]
  17. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007). [CrossRef] [PubMed]
  18. L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett.19(22), 1813–1815 (2007). [CrossRef]
  19. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009). [CrossRef] [PubMed]
  20. D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009). [CrossRef]
  21. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  22. Y. Luo, J. Simons, J. Costa, I. Shubin, W. Chen, B. Frans, M. Robinson, R. Shafiiha, S. Liao, N.-N. Feng, X. Zheng, G. Li, J. Yao, H. Thacker, M. Asghari, K. Goossen, K. Raj, A. V. Krishnamoorthy, and J. E. Cunningham, “Experimental studies of the Franz-Keldysh effect in CVD grown GeSi epi on SOI,” Proc. SPIE7944, 79440P, 79440P-15 (2011) (Photonics West). [CrossRef]
  23. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  24. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  25. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  26. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  27. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low voltage, compact, depletion-mode, silicon Mach-Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron.16(1), 159–164 (2010). [CrossRef]
  28. D. H. Staelin, A. W. Morgenthaler, and J. A. Kong, Electromagnetic Waves (Prentice Hall, Englewood Cliffs, N.J., 1994).
  29. A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, NY, 1967).
  30. M. R. Watts, D. C. Trotter, and R. W. Young, “Maximally Confined High-Speed Second Order Silicon Microdisk Switches,” in Proc. OFC/NFOEC, Technical Digest (CD) (Optical Society of America, 2008), paper PDP14. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-PDP14 .
  31. B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, “High-speed 2×2 switch for multiwavelength silicon-photonic networks–on-chip,” J. Lightwave Technol.27(14), 2900–2907 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited