OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22004–22023

Photorefractive two-wave mixing for image amplification in digital holography

Nektarios Koukourakis, Tarek Abdelwahab, Ming Yuan Li, Henning Höpfner, Yiu Wai Lai, Emmanouil Darakis, Carsten Brenner, Nils C. Gerhardt, and Martin R. Hofmann  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22004-22023 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (5782 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use photorefractive two-wave mixing for coherent amplification of the object beam in digital holographic recording. Both amplitude and phase reconstruction benefit from the prior amplification as they have an increased SNR. We experimentally verify that the amplification process does not affect the phase of the wavefield. This allows for digital holographic phase analysis after amplification. As the grating formation in photorefractive crystals is just driven by coherent light, the crystal works as a coherence gate. Thus the proposed combination allows for applying digital holography for imaging through scattering media, after the image bearing light is coherence gated and filtered out of scattered background. We show experimental proof-of principle results.

© 2011 OSA

OCIS Codes
(090.0090) Holography : Holography
(110.1650) Imaging systems : Coherence imaging
(190.5330) Nonlinear optics : Photorefractive optics
(190.7070) Nonlinear optics : Two-wave mixing
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: September 13, 2011
Revised Manuscript: October 12, 2011
Manuscript Accepted: October 13, 2011
Published: October 21, 2011

Nektarios Koukourakis, Tarek Abdelwahab, Ming Yuan Li, Henning Höpfner, Yiu Wai Lai, Emmanouil Darakis, Carsten Brenner, Nils C. Gerhardt, and Martin R. Hofmann, "Photorefractive two-wave mixing for image amplification in digital holography," Opt. Express 19, 22004-22023 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  2. K. A. Stetson, “Holographic fog penetration,” J. Opt. Soc. Am. 57(8), 1060–1061 (1967). [CrossRef]
  3. P. Günter and J.-P. Huignard, “Photorefractive Materials and their Applications 1”, Topics in Applied Physics Volume 61, Springer (1988).
  4. P. Günter and J.-P. Huignard, “Photorefractive Materials and their Applications 2,” Topics in Applied Physics Volume 62, (Springer 1988).
  5. N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009). [CrossRef] [PubMed]
  6. U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [CrossRef] [PubMed]
  7. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002). [CrossRef]
  8. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006). [CrossRef] [PubMed]
  9. G. Pedrini, P. Fröning, H. J. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999). [CrossRef]
  10. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13(7), R61–R72 (2002). [CrossRef]
  11. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003). [CrossRef] [PubMed]
  12. E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010). [CrossRef]
  13. Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).
  14. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004). [CrossRef] [PubMed]
  15. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005). [CrossRef] [PubMed]
  16. E. Leith and J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55(5), 569–570 (1965). [CrossRef]
  17. C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003). [CrossRef]
  18. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25(4), 212–214 (2000). [CrossRef] [PubMed]
  19. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005). [CrossRef] [PubMed]
  20. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007). [CrossRef] [PubMed]
  21. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70(1), 151–154 (2000). [CrossRef]
  22. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004). [CrossRef] [PubMed]
  23. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20(11), 1331–1333 (1995). [CrossRef] [PubMed]
  24. A. Shiratori and M. Obara, “Photorefractive coherence gated interferometry,” Rev. Sci. Instrum. 69(11), 3741–3745 (1998). [CrossRef]
  25. P. Yeh, “Two-wave Mixing in Nonlinear Media,” IEEE J. Quantum Electron. 25(3), 484–519 (1989). [CrossRef]
  26. M. Chi, J. P. Huignard, and P. M. Petersen, “A general theory of two-wave mixing in nonlinear media,” J. Opt. Soc. Am. B 26(8), 1578–1584 (2009). [CrossRef]
  27. Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 2 (1986).
  28. A. Brignon and J. P. Huignard, “Rhodium-doped barium titanate for beam control of neodymium lasers,” Pure Appl. Opt. 7(2), 257–270 (1998). [CrossRef]
  29. T. Omatsu, M. J. Damzen, A. Minassian, and K. Kuroda, “Solid-State Lasers with a Photorefractive Phase-Conjugate Mirror”, in Photorefractive Materials and Their Applications 3 (Springer, Berlin 2007).
  30. E. Podivilov, B. STurman, A. Shumelyuk, and S. Odoulov, “Light Pulse Slowing Down upto 0.025cm/s by Photorefractive Two-wave Coupling,” Phys. Rev. Lett. 91(8), 083902 (2003). [CrossRef] [PubMed]
  31. B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive Oscillators,” IEEE J. Quantum Electron. 25(3), 550–569 (1989). [CrossRef]
  32. G. Pauliat, N. Dubreuil and G. Roosen, “Self organizing laser cavities”, Photorefractive Materials and Their Applications 3 (Springer 2007).
  33. D. Z. Anderson and J. Feinberg, “Optical Novelty Filters,” IEEE J. Quantum Electron. 25(3), 635–647 (1989). [CrossRef]
  34. J. Wilde, R. McRuer, L. Hesselink, and J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” Proc. SPIE 752, 200 (1987).
  35. H. Rajbenbach, A. Delboulbé, and J. P. Huignard, “Noise suppression in photorefractive image amplifiers,” Opt. Lett. 14(22), 1275–1277 (1989). [CrossRef] [PubMed]
  36. J. Joseph, P. K. C. Pillai, and K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystals,” Opt. Commun. 80(1), 84–88 (1990). [CrossRef]
  37. S. Breugnot, D. Dolfi, H. Rajbenbach, J. P. Huignard, and M. Defour, “Enhancement of the signal-to-background ratio in photorefractive two-wave mixing by mutually incoherent two-beam coupling,” Opt. Lett. 19(14), 1070–1072 (1994). [CrossRef] [PubMed]
  38. H. Jagannath and P. Venkateswarlu, “Effect of counterpropagating beams on fanning in BaTiO3,” Opt. Commun. 91(5-6), 509–519 (1992). [CrossRef]
  39. X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).
  40. F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004). [CrossRef] [PubMed]
  41. S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6 crystal,” Opt. Lett. 35(11), 1798–1800 (2010). [CrossRef]
  42. P. Santos, M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Acousto-optic imaging with a digital holography scheme: new scheme to obtain axial resolution,” Proc. SPIE 5864, 1–6 (2005).
  43. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000). [CrossRef] [PubMed]
  44. J. W. Goodman, Introduction to Fourier-Optics, 2nd Ed. (Mc Graw Hill, 1996).
  45. N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23Issue 23), 21015–21029 (2009). [CrossRef] [PubMed]
  46. G. C. Gilbreath and J. F. Reintjes, “Photorefractive Fourier-image amplification for low light level image detection,” Microw. Opt. Technol. Lett. 12(3), 119–123 (1996). [CrossRef]
  47. G. Notni and R. Kowarschik, “Theory of amplitude and phase effects in 2D- Two-wave-mixing,” IEEE J. Quantum Electron. 27(9), 2193–2200 (1991). [CrossRef]
  48. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69(3), 393–399 (1979). [CrossRef]
  49. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45(29), 7667–7673 (2006). [CrossRef] [PubMed]
  50. A. Pecchia, M. Laurito, P. Apai, and M. B. Danailov, “Studies of two-wave mixing of very broad-spectrum laser,” J. Opt. Soc. Am. B 16(6), 917 (1999). [CrossRef]
  51. Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, “Elimination of beam walk-off in low-coherence off-axis photorefractive holography,” Opt. Lett. 26(6Issue 6), 334–336 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited