OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22029–22106

Nanoplasmonics: past, present, and glimpse into future

Mark I. Stockman  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 22029-22106 (2011)
http://dx.doi.org/10.1364/OE.19.022029


View Full Text Article

Enhanced HTML    Acrobat PDF (11741 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A review of nanoplasmonics is given. This includes fundamentals, nanolocalization of optical energy and hot spots, ultrafast nanoplasmonics and control of the spatiotemporal nanolocalization of optical fields, and quantum nanoplasmonics (spaser and gain-assisted plasmonics). This article reviews both fundamental theoretical ideas in nanoplasmonics and selected experimental developments. It is designed both for specialists in the field and general physics readership.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(320.7120) Ultrafast optics : Ultrafast phenomena
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: September 6, 2011
Revised Manuscript: October 13, 2011
Manuscript Accepted: October 20, 2011
Published: October 24, 2011

Virtual Issues
(2011) Advances in Optics and Photonics
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics
Collective Phenomena (2011) Optics Express

Citation
Mark I. Stockman, "Nanoplasmonics: past, present, and glimpse into future," Opt. Express 19, 22029-22106 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-22029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57, 783–826 (1985). [CrossRef]
  2. M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B46, 2821–2830 (1992). [CrossRef]
  3. L. Gunnarsson, S. Petronis, B. Kasemo, H. Xu, J. Bjerneld, and M. Kall, “Optimizing nanofabricated substrates for surface enhanced Raman scattering,” Nanostruct. Mater.12, 783–788 (1999). [CrossRef]
  4. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999). [CrossRef]
  5. H. Xu, J. Aizpurua, M. Kall, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000). [CrossRef]
  6. K. Kneipp, M. Moskovits, and H. Kneipp, eds., Electromagnetic Theory of SERS, vol. 103 (Springer, Heidelberg, 2006).
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998). [CrossRef]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002). [PubMed]
  9. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90, 167401–1–4 (2003). [PubMed]
  10. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445, 39–46 (2007). [PubMed]
  11. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010). [CrossRef]
  12. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404–1–4 (2004). [PubMed]
  13. E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16, 45–57 (2008). [PubMed]
  14. E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102, 203904–1–4 (2009). [PubMed]
  15. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett.8, 2321–2327 (2008). [PubMed]
  16. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5, 67–72 (2009). [PubMed]
  17. F. De Angelis, F. Gentile, F. M. G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics p. doi: (2011). [CrossRef]
  18. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source,” Nano Lett.7, 2784–2788 (2007). [PubMed]
  19. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: A nanoemitter on a tip,” Nano Lett.10, 592–596 (2010). [PubMed]
  20. M. B. Raschke, S. Berweger, J. M. Atkin, and R. L. Olmon, “Adiabatic tip-plasmon focusing for nano-Raman spectroscopy,” J. Phys. Chem. Lett.1, 3427–3432 (2010). [CrossRef]
  21. S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett., p. doi: (2011). [CrossRef] [PubMed]
  22. D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles,” Nano Lett.11, 1609–1613 (2011). [PubMed]
  23. M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today64, 39–44 (2011). [CrossRef]
  24. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Accounts Chem. Res.41, 1842–1851 (2008). [CrossRef]
  25. X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21, 4880–4910 (2009). [CrossRef]
  26. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [PubMed]
  27. D. J. Bergman and D. Stroud, “Properties of macroscopically inhomogeneous media,” in “Solid State Physics,”, vol. 46, H. Ehrenreich and D. Turnbull, eds. (Academic Press, 1992), pp. 148–270.
  28. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  29. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90, 027402–1–4 (2003). [PubMed]
  30. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  31. E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett.101, 163902–1–4 (2008). [PubMed]
  32. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B69, 121403(R)–1–4 (2004). [CrossRef]
  33. I. A. Larkin and M. I. Stockman, “Imperfect perfect lens,” Nano Lett.5, 339–343 (2005). [PubMed]
  34. S. I. Bozhevolny, ed., Plasmonic Nanoguides and Circuits (World Scientific Publishing, 2008). [CrossRef]
  35. A. Kramer, F. Keilmann, B. Knoll, and R. Guckenberger, “The coaxial tip as a nano-antenna for scanning near-field microwave transmission microscopy,” Micron27, 413–417 (1996). [CrossRef]
  36. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75, 1063–1065 (1999). [CrossRef]
  37. T. Kalkbrenner, U. Hkanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett.95, 200801–1–4 (2005). [PubMed]
  38. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [PubMed]
  39. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94, 017402–1–4 (2005). [PubMed]
  40. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402–1–4 (2006). [PubMed]
  41. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802–1–4 (2007). [PubMed]
  42. T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. A9, S315–S321 (2007). [CrossRef]
  43. T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, “A monopole antenna at optical frequencies: Single-molecule near-field measurements,” IEEE Ttrans. Antenn. Propag.55, 3010–3017 (2007). [CrossRef]
  44. N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: Plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C112, 3766–3773 (2008). [CrossRef]
  45. G. W. Bryant, F. J. G. de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631–636 (2008). [PubMed]
  46. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101, 116805–1–4 (2008). [PubMed]
  47. H. C. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. W. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express16, 7756–7766 (2008). [PubMed]
  48. R. M. Bakker, H. K. Yuan, Z. T. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101–1–3 (2008). [CrossRef]
  49. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express16, 20295–20305 (2008). [PubMed]
  50. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. V. Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008). [CrossRef]
  51. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2, 226–229 (2008). [CrossRef]
  52. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009). [CrossRef]
  53. H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9, 4007–4011 (2009). [PubMed]
  54. T. Hanke, G. Krauss, D. Trauetlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett.103, 257404–1–4 (2009). [CrossRef]
  55. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A11, 114030 (2009). [CrossRef]
  56. L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010). [PubMed]
  57. V. Giannini, G. Vecchi, and J. G. Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801–1–4 (2010). [CrossRef]
  58. A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology21, 065306–1–6 (2010). [PubMed]
  59. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332, 702–704 (2011). [PubMed]
  60. W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express19, 3925–3936 (2011). [PubMed]
  61. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater.10, 631–636 (2011). [PubMed]
  62. I. S. Maksymov and A. E. Miroshnichenko, “Active control over nanofocusing with nanorod plasmonic antennas,” Opt. Express19, 5888–5894 (2011). [PubMed]
  63. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011). [CrossRef]
  64. M. Schnell, P. A. Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5, 283–287 (2011). [CrossRef]
  65. V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Quantum Electrodynamics (Pergamon Press, 1982).
  66. U. Fano, “On the absorption spectrum of noble gases at the arc spectrum limit,” Nuovo Cimento12, 154–161 (1935). [CrossRef]
  67. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99, 147401–1–4 (2007). [PubMed]
  68. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8, 3983–3988 (2008). [PubMed]
  69. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113, 4028–4034 (2009). [PubMed]
  70. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: Plasmonic properties of mismatched nanoparticle pairs,” ACS Nano4, 819–832 (2010). [PubMed]
  71. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328, 1135–1138 (2010). [PubMed]
  72. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express18, 9015–9019 (2010). [PubMed]
  73. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett.10, 2721–2726 (2010). [PubMed]
  74. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010). [CrossRef]
  75. M. I. Stockman, “Dark-hot resonances,” Nature467, 541–542 (2010). [PubMed]
  76. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett.87, 167401–1–4 (2001). [PubMed]
  77. L. Novotny, “Forces in optical near-fields,” in Near-Field Optics and Surface Plasmon Polaritons, vol. 81 (Springer-Verlag, 2001), pp. 123–141. [CrossRef]
  78. F. V. Ignatovich and L. Novotny, “Experimental study of nanoparticle detection by optical gradient forces,” Rev. Sci. Instrum.74, 5231–5235 (2003). [CrossRef]
  79. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep.57, 59–112 (2005). [CrossRef]
  80. X. T. Li, D. J. Bergman, and D. Stroud, “Electric forces among nanospheres in a dielectric host,” Europhys. Lett.69, 1010–1016 (2005). [CrossRef]
  81. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett.96, 238101 (2006). [PubMed]
  82. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett.32, 1156–1158 (2007). [PubMed]
  83. I. Takuya and I. Hajime, “Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: From microscopic to macroscopic descriptions,” Phys. Rev. B77, 245319–1–16 (2008).
  84. R. Quidant, S. Zelenina, and M. Nieto-Vesperinas, “Optical manipulation of plasmonic nanoparticles,” Appl. Phys. A89, 233–239 (2007). [CrossRef]
  85. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3, 477–480 (2007). [CrossRef]
  86. R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev.2, 47–57 (2008). [CrossRef]
  87. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett.100, 186804–1–4 (2008). [PubMed]
  88. M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5, 915–919 (2009). [CrossRef]
  89. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9, 3387–3391 (2009). [PubMed]
  90. L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Kall, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip9, 193–195 (2009). [CrossRef]
  91. M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett.103, 186801–1–4 (2009). [PubMed]
  92. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev.106, 874–881 (1957). [CrossRef]
  93. A. W. Blackstock, R. H. Ritchie, and R. D. Birkhoff, “Mean free path for discrete electron energy losses in metallic foils,” Phys. Rev.100, 1078 (1955). [CrossRef]
  94. N. Swanson and C. J. Powell, “Inelastic scattering cross sections for 20-kev electrons in Al, Be, and polystyrene,” Phys. Rev.145, 195 (1966). [CrossRef]
  95. F. J. G. de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209 (2010). [CrossRef]
  96. A. Reyes-Coronado, R. G. Barrera, P. E. Batson, P. M. Echenique, A. Rivacoba, and J. Aizpurua, “Electromagnetic forces on plasmonic nanoparticles induced by fast electron beams,” Phys. Rev. B82, 235429–1–19 (2010). [CrossRef]
  97. B. B. Dasgupta and R. Fuchs, “Polarizability of a small sphere including nonlocal effects,” Phys. Rev. B24, 554 –561 (1981). [CrossRef]
  98. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [PubMed]
  99. F. J. G. de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112, 17983–17987 (2008). [CrossRef]
  100. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  101. V. N. Pustovit and T. V. Shahbazyan, “Quantum-size effects in SERS from noble-metal nanoparticles,” Microelectronics J.36, 559–563 (2005). [CrossRef]
  102. V. N. Pustovit and T. V. Shahbazyan, “Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: A semiclassical approach,” J. Opt. Soc. Am. A23, 1369–1374 (2006). [CrossRef]
  103. V. N. Pustovit and T. V. Shahbazyan, “Surface-enhanced Raman scattering on the nanoscale: A microscopic approach,” J. Opt. A8, S208–S212 (2006). [CrossRef]
  104. V. N. Pustovit and T. V. Shahbazyan, “SERS from molecules adsorbed on small Ag nanoparticles: A microscopic model,” Chem. Phys. Lett.420, 469–473 (2006). [CrossRef]
  105. V. N. Pustovit and T. V. Shahbazyan, “Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles,” Phys. Rev. B73, 085408–1–7 (2006). [CrossRef]
  106. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett.9, 887–891 (2009). [PubMed]
  107. P. Nordlander, J. Zuloaga, and E. Prodan, “Quantum plasmonics: Optical properties and tunability of metallic nanorods,” ACS Nano4, 5269–5276 (2010). [PubMed]
  108. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  109. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97, 053002–1–4 (2006). [PubMed]
  110. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450, 402–406 (2007). [PubMed]
  111. P. Berini, A. Akbari, and R. N. Tait, “Surface plasmon waveguide Schottky detector,” Opt. Express18, 8505–8514 (2010). [PubMed]
  112. C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett.35, 529–531 (2010). [PubMed]
  113. U. Levy, I. Goykhman, B. Desiatov, J. Khurgin, and J. Shappir, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11, 2219–2224 (2011). [PubMed]
  114. S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, Hoboken, N.J., 2007).
  115. A. V. Butenko, V. M. Shalaev, and M. I. Stockman, “Giant impurity nonlinearities in optics of fractal clusters,” Sov. Phys. JETP67, 60–69 (1988).
  116. A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett.48, 571–573 (1988).
  117. S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, and M. I. Stockman, “Surface-enhanced parametric scattering of light by silver clusters,” JETP Lett.47, 243–246 (1988).
  118. V. M. Shalaev, M. I. Stockman, and R. Botet, “Resonant excitations and nonlinear optics of fractals,” Physica A185, 181–186 (1992). [CrossRef]
  119. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  120. J. Kneipp, H. Kneipp, and K. Kneipp, “Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering,” Proc. Natl. Acad. Sci. USA103, 17149–17153 (2006). [PubMed]
  121. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett.5, 1123–1127 (2005). [PubMed]
  122. A. V. Zayats, I. I. Smolyaninov, and C. C. Davis, “Observation of localized plasmonic excitations in thin metal films with near-field second-harmonic microscopy,” Opt. Commun.169, 93–96 (1999). [CrossRef]
  123. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 13903–1–4 (2003). [CrossRef]
  124. S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett.90, 197403–1–4 (2003). [PubMed]
  125. M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, and O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett.29, 62–64 (2004). [PubMed]
  126. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett.92, 057402–1–4 (2004). [PubMed]
  127. N. I. Zheludev and V. I. Emelyanov, “Phase matched second harmonic generation from nanostructured metal surfaces,” J. Opt. A6, 26–28 (2004). [CrossRef]
  128. R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc.127, 12482–12483 (2005). [PubMed]
  129. B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett.7, 1251–1255 (2007). [PubMed]
  130. M. Zdanowicz, S. Kujala, H. Husu, and M. Kauranen, “Effective medium multipolar tensor analysis of second-harmonic generation from metal nanoparticles,” N. J. Phys.13, 023025–1–12 (2011). [CrossRef]
  131. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett.104, 046803–1–4 (2010). [PubMed]
  132. T. Utikal, M. I. Stockman, A. P. Heberle, M. Lippitz, and H. Giessen, “All-optical control of the ultrafast dynamics of a hybrid plasmonic system,” Phys. Rev. Lett.104, 113903–1–4 (2010). [PubMed]
  133. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007). [CrossRef]
  134. Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96, 143105–1–3 (2010). [CrossRef]
  135. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009). [CrossRef]
  136. S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008). [PubMed]
  137. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12, 024004–1–13 (2010). [CrossRef]
  138. M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett.106, 156802–1–4 (2011). [PubMed]
  139. M. I. Stockman, “Loss compensation by gain and spasing,” Phil. Trans. R. Soc. A369, 3510–3524 (2011). [PubMed]
  140. P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett.35, 1551–1553 (2010). [PubMed]
  141. E. Feigenbaum and M. Orenstein, “Plasmon-soliton,” Opt. Lett.32, 674–676 (2007). [PubMed]
  142. S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Suessmann, C. Peltz, I. Ahmad, S. A. Trushin, V. Pervak, S. Karsch, M. J. J. Vrakking, B. Langer, C. Graf, M. I. Stockman, F. Krausz, E. Ruehl, and M. F. Kling, “Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields,” Nat. Phys.7, 656–662 (2011). [CrossRef]
  143. M. Kruger, M. Schenk, and P. Hommelhoff, “Attosecond control of electrons emitted from a nanoscale metal tip,” Nature475, 78–81 (2011). [PubMed]
  144. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Metallization of nanofilms in strong adiabatic electric fields,” Phys. Rev. Lett.105, 086803–1–4 (2010). [PubMed]
  145. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, “Predicted ultrafast dynamic metallization of dielectric nanofilms by strong single-cycle optical fields,” Phys. Rev. Lett.107, 086602–1–5 (2011). [PubMed]
  146. D. J. Bergman and D. Stroud, “Properties of macroscopically inhomogeneous media,” in Solid State Physics, vol. 46, H. Ehrenreich and D. Turnbull, eds. (Academic Press, 1992), pp. 148–270. [CrossRef]
  147. M. I. Stockman, D. J. Bergman, and T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B69, 054202–1–10 (2004). [CrossRef]
  148. V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities),” Sov. Phys. JETP65, 287–294 (1987).
  149. V. M. Shalaev, R. Botet, and A. V. Butenko, “Localization of collective dipole excitations on fractals,” Phys. Rev. B48, 6662–6664 (1993). [CrossRef]
  150. V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals - localization of dipole excitations and giant optical polarizabilities,” Physica A207, 197–207 (1994). [CrossRef]
  151. A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and Kerr nonlinearity in semicontinuous metal films,” Physica B279, 87–89 (2000). [CrossRef]
  152. S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B58, 11441–1448 (1998). [CrossRef]
  153. A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B60, 16389–16408 (1999). [CrossRef]
  154. S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82, 4520–4523 (1999). [CrossRef]
  155. V. M. Shalaev, Nonlinear Optics of Random Media : Fractal Composites and Metal-Dielectric Films (Springer-Verlag, 2000).
  156. M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E56, 6494–6507 (1997). [CrossRef]
  157. M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B53, 2183–2186 (1996). [CrossRef]
  158. M. I. Stockman, “Chaos and spatial correlations for dipolar eigenproblems,” Phys. Rev. Lett.79, 4562–4565 (1997). [CrossRef]
  159. M. I. Stockman, “Giant attosecond fluctuations of local optical fields in disordered nanostructured media,” Phys. Rev. B62, 10494–10497 (2000). [CrossRef]
  160. V. Krachmalnicoff, E. Castanie, Y. D. Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett.105, 183901–1–4 (2010). [CrossRef]
  161. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72, 4149–4152 (1994). [PubMed]
  162. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Photon scanning-tunneling-microscopy images of optical-excitations of fractal metal colloid clusters - Comment,” Phys. Rev. Lett.75, 2450–2450 (1995). [PubMed]
  163. L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photon. Rev., 1–41 (2011).
  164. M. Kolb, R. Botet, and J. Julienne, “Scaling of kinetically growing clusters,” Phys. Rev. Lett.51, 1123–1126 (1983). [CrossRef]
  165. D. A. Weitz and M. Oliveria, “Fractal structures formed by kinetic aggregation of aqueous gold colloids,” Phys. Rev. Lett.52, 1433–1436 (1984). [CrossRef]
  166. S. L. Westcott and N. J. Halas, “Electron relaxation dynamics in semicontinuous metal films on nanoparticle surfaces,” Chem. Phys. Lett.356, 207–213 (2002). [CrossRef]
  167. K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett.94, 226101–1–4 (2005). [PubMed]
  168. M. I. Stockman, “Giant fluctuations of second harmonic generation on nanostructured surfaces,” Chem. Phys.318, 156–162 (2005). [CrossRef]
  169. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D41, 013001–1–31 (2008). [CrossRef]
  170. A. L. Efros, Physics and Geometry of Disorder: Percolation Theory (Mir, Moscow, 1986).
  171. L. S. Levitov, “Delocalization of vibrational modes caused by electric dipole interaction,” Phys. Rev. Lett.64, 547–550 (1990). [PubMed]
  172. D. A. Parshin and H. R. Schober, “Multifractal structure of eigenstates in the Anderson model with long-range off-diagonal disorder,” Phys. Rev. B57, 10232–10235 (1998). [CrossRef]
  173. A. L. Burin, Y. Kagan, L. A. Maksimov, and I. Y. Polischuk, “Dephasing rate in dielectric glasses at ultralow temperatures,” Phys. Rev. Lett.80, 2945–2948 (1998). [CrossRef]
  174. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical fields in fractal clusters,” Phys. Rev. Lett.72, 2486–2489 (1994). [PubMed]
  175. M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B53, 2183–2186 (1996). [CrossRef]
  176. M. I. Stockman, “Chaos and spatial correlations for dipolar eigenproblem,” Phys. Rev. Lett.79, 4562–4565 (1997). [CrossRef]
  177. M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E56, 6494–6507 (1997). [CrossRef]
  178. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11, 2329–2333 (2011). [PubMed]
  179. V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B43, 8183 (1991). [CrossRef]
  180. M. I. Stockman, “Electromagnetic theory of SERS,” in Surface Enhanced Raman Scattering, vol. 103, M. M. K. Kneipp and H. Kneipp, eds. (Springer, 2006), pp. 47 – 66. [CrossRef]
  181. H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature469, 385–388 (2011). [PubMed]
  182. A. McLeod, A. Weber-Bargioni, Z. Zhang, S. Dhuey, B. Harteneck, J. B. Neaton, S. Cabrini, and P. J. Schuck, “Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy,” Phys. Rev. Lett.106, 037402 (2011). [PubMed]
  183. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin v walks hand-overhand: Single fluorophore imaging with 1.5-nm localization,” Science300, 2061–2065 (2003). [PubMed]
  184. M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photonics1, 539–544 (2007). [CrossRef]
  185. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998). [CrossRef]
  186. J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett.85, 2921–2924 (2000). [PubMed]
  187. J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, and F. Trager, “Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: Influence of particle size, shape, and chemical surrounding,” Phys. Rev. Lett.89, 257404–1–4 (2002). [PubMed]
  188. C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, T. Vartanyan, and F. Trager, “Chemical interface damping of surface plasmon excitation in metal nanoparticles: A study by persistent spectral hole burning,” Appl. Phys. B76, 869–875 (2003). [CrossRef]
  189. T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93, 243901–1–4 (2004). [CrossRef]
  190. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  191. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95, 267407–1–4 (2005). [CrossRef]
  192. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett.99, 053903–1–4 (2007). [PubMed]
  193. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express11, 755–760 (2003). [PubMed]
  194. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315, 1686–1686 (2007). [PubMed]
  195. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88, 067402–1–4 (2002). [PubMed]
  196. D. J. Tannor and S. A. Rice, “Control of selectivity of chemical reaction via control of wave packet evolution,” J. Chem. Phys.83, 5013–5018 (1985). [CrossRef]
  197. P. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes (Wiley, 2003).
  198. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett.68, 1500 (1992). [PubMed]
  199. G. Kurizki, M. Shapiro, and P. Brumer, “Phase-coherent control of photocurrent directionality in semiconductors,” Phys. Rev. B39, 3435–3437 (1989). [CrossRef]
  200. T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature397, 233–235 (1999). [CrossRef]
  201. P. Brumer and M. Shapiro, “Laser control of molecular processes,” Ann. Rev. Phys. Chem.43, 257–282 (1992). [CrossRef]
  202. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Chemistry - whither the future of controlling quantum phenomena?” Science288, 824–828 (2000). [PubMed]
  203. J. M. Geremia and H. Rabitz, “Optimal identification of Hamiltonian information by closed-loop laser control of quantum systems,” Phys. Rev. Lett.89, 263902–1–4 (2002). [PubMed]
  204. N. A. Nguyen, B. K. Dey, M. Shapiro, and P. Brumer, “Coherent control in nanolithography: Rydberg atoms,” J. Phys. Chem. A108, 7878–7888 (2004). [CrossRef]
  205. M. Shapiro and P. Brumer, “Quantum control of bound and continuum state dynamics,” Physics Reports425, 195–264 (2006). [CrossRef]
  206. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science282, 919–922 (1998). [PubMed]
  207. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft x-rays,” Nature406, 164–166 (2000). [PubMed]
  208. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418, 512–514 (2002). [PubMed]
  209. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett.92, 208301–1–4 (2004). [PubMed]
  210. M. Durach, A. Rusina, K. Nelson, and M. I. Stockman, “Toward full spatio-temporal control on the nanoscale,” Nano Lett.7, 3145–3149 (2007). [PubMed]
  211. G. Volpe, S. Cherukulappurath, R. J. Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett.9, 3608–3611 (2009). [PubMed]
  212. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics5, 360–363 (2011). [CrossRef]
  213. M. I. Stockman and P. Hewageegana, “Nanolocalized nonlinear electron photoemission under coherent control,” Nano Lett.5, 2325–2329 (2005). [PubMed]
  214. M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett.6, 715–719 (2006). [PubMed]
  215. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. d. Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446, 301–304 (2007). [PubMed]
  216. M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, “Phase propagation of localized surface plasmons probed by time-resolved photoemission electron microscopy,” Appl. Phys. A88, 473–480 (2007). [CrossRef]
  217. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Struber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. USA107, 5329–5333 (2010). [PubMed]
  218. X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B77, 195109–1–10 (2008). [CrossRef]
  219. A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to communicate with time-reversal antennas,” Phys. Rev. Lett.90, 014301–1–4 (2003). [PubMed]
  220. G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, “Time reversal of electromagnetic waves,” Phys. Rev. Lett.92, 193904–1–3 (2004). [PubMed]
  221. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315, 1120–1122 (2007). [PubMed]
  222. M. I. Stockman, “Electromagnetic theory of SERS,” in Surface Enhanced Raman Scattering – Physics and Applications, K. Kneipp, M. Moskovits, and H. Kneipp, eds. (Springer-Verlag, 2006), pp. 47–66. [PubMed]
  223. M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Optical-absorption and localization of eigen-modes in disordered clusters,” Phys. Rev. B51, 185–195 (1995). [CrossRef]
  224. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, New York, 1975).
  225. A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett.7, 470–475 (2007). [PubMed]
  226. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7, 334–337 (2007). [PubMed]
  227. M. Sukharev and T. Seideman, “Coherent control of light propagation via nanoparticle arrays,” J. Phys. B40, S283–S298 (2007). [CrossRef]
  228. M. M. Wefers and K. A. Nelson, “Programmable phase and amplitude femtosecond pulse shaping,” Opt. Lett.18, 2032–2034 (1993). [PubMed]
  229. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science299, 374–377 (2003). [PubMed]
  230. A. J. Babajanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87, 3785–3788 (2000). [CrossRef]
  231. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104, 034311–1–8 (2008). [CrossRef]
  232. W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett.86, 181108–1–3 (2005). [CrossRef]
  233. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005). [PubMed]
  234. R. J. Mailloux, Phased Array Antenna Handbook (Artech House, 2005).
  235. G. Lerosey, J. de Rosny, A. Tourin, A. Derode, and M. Fink, “Time reversal of wideband microwaves,” Appl. Phys. Lett.88, 154101–1–3 (2006). [CrossRef]
  236. M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys.10, 025031–1–20 (2008). [CrossRef]
  237. T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: Creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett.106, 085501–1–4 (2011). [PubMed]
  238. M. Bauer, O. Schmidt, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schonhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B74, 223–227 (2002). [CrossRef]
  239. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett.26, 557–559 (2001). [CrossRef]
  240. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B74, S133–S144 (2002). [CrossRef]
  241. H. A. Atwater, “The promise of plasmonics,” Sci. Am.296, 56–63 (2007). [PubMed]
  242. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008). [PubMed]
  243. A. Israel, M. Mrejen, Y. Lovsky, M. Polhan, S. Maier, and A. Lewis, “Near-field imaging probes electromagnetic waves,” Laser Focus World43, 99–102 (2007).
  244. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3, 220–224 (2009). [CrossRef]
  245. N. Nagatani, R. Tanaka, T. Yuhi, T. Endo, K. Kerman, Y. T. Tamiya, and E Tamiya, “Gold nanoparticle-based novel enhancement method for the development of highly sensitive immunochromatographic test strips,” Sci. Technol. Adv. Mater.7, 270–275 (2006). [CrossRef]
  246. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003). [PubMed]
  247. I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim, “Plasmonic generation of ultrashort extreme ultraviolet light pulses,” Nat. Photonics (2011) (In Press). [CrossRef]
  248. D. Kahng, “Electric field controlled semiconductor device,” United States Patent 3,102,230 (1963).
  249. Y. Tsividis, Operation and Modeling of the MOS Transistor (McGraw-Hill, New York, 1999).
  250. M. I. Stockman and D. J. Bergman, “Surface plasmon amplification by stimulated emission of radiation (spaser),” US Patent 7,569,188 (2009).
  251. M. I. Stockman, “Spasers explained,” Nat. Photonics2, 327–329 (2008). [CrossRef]
  252. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Sutee-wong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009). [PubMed]
  253. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Ntzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009). [PubMed]
  254. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009). [PubMed]
  255. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10, 110–113 (2010). [PubMed]
  256. R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Mkinen, K. Bussmann, L. Cheng, F. S. Choa, and J. P. Long, “A room-temperature semiconductor spaser operating near 1.5 micron,” Opt. Express19, 8954–8961 (2011). [PubMed]
  257. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Noetzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2007). [CrossRef]
  258. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express15, 2622–2653 (2007). [PubMed]
  259. D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. B22, 3527–3539 (1980). [CrossRef]
  260. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: Controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17, 8548–8551 (2009). [PubMed]
  261. J. Seidel, S. Grafstroem, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett.94, 177401–1–4 (2005). [PubMed]
  262. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806–1–4 (2008). [PubMed]
  263. K. Li, X. Li, M. I. Stockman, and D. J. Bergman, “Surface plasmon amplification by stimulated emission in nanolenses,” Phys. Rev. B71, 115409–1–4 (2005). [CrossRef]
  264. Z. G. Dong, H. Liu, T. Li, Z. H. Zhu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Resonance amplification of left-handed transmission at optical frequencies by stimulated emission of radiation in active metamaterials,” Opt. Express16, 20974–20980 (2008). [PubMed]
  265. M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express16, 19785–19798 (2008). [PubMed]
  266. A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B (Rapid Communications)79, 241104(R)–1–4 (2009).
  267. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett.105, 127401–1–4 (2010). [PubMed]
  268. S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express16, 10580–10595 (2008). [PubMed]
  269. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2, 351–354 (2008). [CrossRef]
  270. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys Rev A71, 063812– (2005). [CrossRef]
  271. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008). [PubMed]
  272. Z. K. Zhou, X. R. Su, X. N. Peng, and L. Zhou, “Sublinear and superlinear photoluminescence from Nd doped anodic aluminum oxide templates loaded with Ag nanowires,” Opt. Express16, 18028–18033 (2008). [PubMed]
  273. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express16, 1385–1392 (2008). [PubMed]
  274. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett.35, 1197–1199 (2010). [PubMed]
  275. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B86, 455–460 (2007). [CrossRef]
  276. M. A. Noginov, “Compensation of surface plasmon loss by gain in dielectric medium,” J. Nanophotonics2, 021855–1–17 (2008). [CrossRef]
  277. I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4, 382–387 (2010). [CrossRef]
  278. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev.112, 1940 (1958).
  279. K. Kneipp, M. Moskovits, and H. Kneipp, eds., Surface Enhanced Raman Scattering: Physics and Applications (Springer-Verlag, Heidelberg New York Tokyo, 2006). [CrossRef]
  280. J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine: Nanotechnology, Biology and Medicine6, 214–226 (2010). [CrossRef]
  281. F. J. Dunmore, D. Z. Liu, H. D. Drew, S. Dassarma, Q. Li, and D. B. Fenner, “Observation of below-gap plasmon excitations in superconducting YBa2Cu3O7 films,” Phys. Rev. B52, R731–R734 (1995). [CrossRef]
  282. D. Schumacher, C. Rea, D. Heitmann, and K. Scharnberg, “Surface plasmons and Sommerfeld-Zenneck waves on corrugated surfaces: Application to High-Tc superconductors,” Surf. Sci.408, 203–211 (1998). [CrossRef]
  283. A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett.97, 111106–1–3 (2010). [CrossRef]
  284. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science331, 290–291 (2011). [PubMed]
  285. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007). [CrossRef]
  286. N. I. Zheludev, “A roadmap for metamaterials,” Optics and Photonics News22, 30–35 (2011). [CrossRef]
  287. M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory,” Phys. Rev. B60, 17071–17083 (1999). [CrossRef]
  288. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466, 735–738 (2010). [PubMed]
  289. Z. Gryczynski, O. O. Abugo, and J. R. Lakowicz, “Polarization sensing of fluorophores in tissues for drug compliance monitoring,” Anal. Biochem.273, 204–211 (1999). [PubMed]
  290. N. Meinzer, M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, “Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain,” Opt. Expr.18, 24140–24151 (2010). [CrossRef]
  291. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch.A 23, 2135–2136 (1968).
  292. J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a micro-cylinder cavity,” Phys. Rev. Lett.106, 183903–1–4 (2011). [PubMed]
  293. O. Hess, S. Wuestner, A. Pusch, K. L. Tsakmakidis, and J. M. Hamm, “Gain and plasmon dynamics in active negative-index metamaterials,” Phil. Trans. Royal Soc. A369, 3525–3550 (2011). [CrossRef]
  294. F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z. Phys. A52, 555–600 (1929).
  295. H. Ghafouri-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003). [CrossRef]
  296. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev.109, 1492–1505 (1958). [CrossRef]
  297. R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: Large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. USA106, 1693–1698 (2009). [PubMed]