OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22107–22112

Short-range surface plasmon propagation supported by stimulated amplification using electrical injection

Yicen Li, Hui Zhang, Ning Zhu, Ting Mei, Dao Hua Zhang, and Jinghua Teng  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22107-22112 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the propagation of the long-range mode (LRSP) and the short-range mode (SRSP) surface plasmon polaritons (SPPs) along the waveguide made from Au film and quantum wells (QWs) gain medium. Influenced by the gain spectral nonuniformity, the SRSP showed narrower spectrum than the LRSP in output, denoting that the SRSP propagation was supported by stimulated amplification (SA) in electrically-pumped QWs. An SRSP output power as large as 1.6 times of that of the LRSP was obtained over a travelling distance of 80μm. The mechanism of SA-supported SRSP propagation can be adopted for electrical modulation of SPPs.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: July 1, 2011
Revised Manuscript: July 30, 2011
Manuscript Accepted: July 30, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Yicen Li, Hui Zhang, Ning Zhu, Ting Mei, Dao Hua Zhang, and Jinghua Teng, "Short-range surface plasmon propagation supported by stimulated amplification using electrical injection," Opt. Express 19, 22107-22112 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005). [CrossRef]
  2. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]
  4. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  5. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008). [CrossRef] [PubMed]
  6. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008). [CrossRef] [PubMed]
  7. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  8. I. P. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18(18), 18633–18641 (2010). [CrossRef] [PubMed]
  9. G. Colas des Francs, P. Bramant, J. Grandidier, A. Bouhelier, J. C. Weeber, and A. Dereux, “Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide,” Opt. Express 18(16), 16327–16334 (2010). [CrossRef] [PubMed]
  10. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010). [CrossRef] [PubMed]
  11. D. Yu. Fedyanin and A. V. Arsenin, “Surface plasmon polariton amplification in metal-semiconductor structures,” Opt. Express 19(13), 12524–12531 (2011). [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  13. Z. J. Yang, N. C. Kim, J. B. Li, M. T. Cheng, S. D. Liu, Z. H. Hao, and Q. Q. Wang, “Surface plasmons amplifications in single Ag nanoring,” Opt. Express 18(5), 4006–4011 (2010). [CrossRef] [PubMed]
  14. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. C. Zhu, M. H. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  15. A. Babuty, A. Bousseksou, J. P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. De Wilde, and R. Colombelli, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104(22), 226806 (2010). [CrossRef] [PubMed]
  16. P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010). [CrossRef] [PubMed]
  17. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006). [CrossRef]
  18. D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009). [CrossRef]
  19. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  20. L. Wendler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59(9), 3289–3291 (1986). [CrossRef]
  21. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  22. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structures,” Opt. Express 15(1), 176–182 (2007). [CrossRef] [PubMed]
  23. X. J. Zhang, Y. C. Li, T. Li, S. Y. Lee, C. G. Feng, L. B. Wang, and T. Mei, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35(18), 3075–3077 (2010). [CrossRef] [PubMed]
  24. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1(7), 742–753 (1984). [CrossRef]
  25. C. K. Chen, P. Berini, D. Z. Feng, S. Tanev, and V. P. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000). [CrossRef] [PubMed]
  26. B. Broberg and S. Lindgren, “Refractive-index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region,” J. Appl. Phys. 55(9), 3376–3381 (1984). [CrossRef]
  27. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35(5), 771–782 (1999). [CrossRef]
  28. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  29. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited