OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22125–22141

Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering

Hsin-Hung Cheng, Shih-Wen Chen, Ying-Yu Chang, Jen-You Chu, Ding-Zheng Lin, Yi-Ping Chen, and Jia-Han Li  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22125-22141 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (5465 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The plasmonic 2D W-shape and 3D inverted pyramidal nanostructures with and without the tips are studied. The effects of the tip height and tip tilt angle on the near field enhancement and far field radiation pattern are discussed in this paper. The localized hot spots are found around the pits and the radiation pattern can be affected by the tip structures. The inverted pyramidal nanostructures with and without the tips were fabricated and their reflection spectra and surface-enhanced Raman scattering (SERS) signals for the chemical molecules thiophenol were measured. The simulation according to the geometry parameters of the fabricated structures is demonstrated. We found that the SERS of our proposed structures with the tips can have stronger light field enhancements than the inverted pyramidal nanostructures without the tips, and the far field radiation pattern can be varied by changing the tip height and tip tilt angle. The study of surface plasmon modes and charge distributions can help the understanding of how to arrange the plasmonic structures to achieve high field enhancement and preferred far field radiation pattern. Our study can be useful for the design of the strong field enhancement SERS substrate with specific far field radiation properties. It can be also applied to the portable Raman detectors for in situ and remote measurements in specific applications.

© 2011 OSA

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:

Original Manuscript: July 11, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: October 3, 2011
Published: October 24, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics
Collective Phenomena (2011) Optics Express

Hsin-Hung Cheng, Shih-Wen Chen, Ying-Yu Chang, Jen-You Chu, Ding-Zheng Lin, Yi-Ping Chen, and Jia-Han Li, "Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering," Opt. Express 19, 22125-22141 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem. 81(2), 519–526 (2009). [CrossRef] [PubMed]
  2. G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, “Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents,” Proc. Natl. Acad. Sci. U.S.A. 103(5), 1215–1220 (2006). [CrossRef] [PubMed]
  3. M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003). [CrossRef] [PubMed]
  4. W.-C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: theory and simulations,” Opt. Express 16(17), 12726–12736 (2008). [PubMed]
  5. K. L. Bechtel, W.-C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications,” Opt. Express 16(17), 12737–12745 (2008). [PubMed]
  6. Y.-B. Lan, S.-Z. Wang, Y.-G. Yin, W. C. Hoffmann, and X.-Z. Zheng, “Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass,” J. Bionics Eng. 5(3), 239–246 (2008). [CrossRef]
  7. R. Son, G. Kim, A. Kothapalli, M. T. Morgan, and D. Ess, “Detection of salmonella enteritidis using a miniature optical surface plasmon resonance biosensor,” J. Phys.: Conf. Ser. 61, 1086–1090 (2007). [CrossRef]
  8. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n≦7) for array applications,” J. Phys. Chem. C 115(11), 4578–4583 (2011). [CrossRef] [PubMed]
  9. J. Wang, L. Yang, S. Boriskina, B. Yan, and B. M. Reinhard, “Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays,” Anal. Chem. 83(6), 2243–2249 (2011). [CrossRef] [PubMed]
  10. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008). [CrossRef] [PubMed]
  11. H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008). [CrossRef] [PubMed]
  12. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  13. E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. Engl. 43(45), 6042–6108 (2004). [CrossRef] [PubMed]
  14. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002). [CrossRef]
  15. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006). [CrossRef] [PubMed]
  16. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004). [CrossRef] [PubMed]
  17. J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95(14), 141111 (2009). [CrossRef]
  18. T. V. Teperik and A. G. Borisov, “Optical resonances in the scattering of light from a nanostructured metal surface: A three-dimensional numerical study,” Phys. Rev. B 79(24), 245409 (2009). [CrossRef]
  19. K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, “Physical mechanisms behind the SERS enhancement of pyramidal pit substrates,” J. Raman Spectrosc. 41(10), 1106–1111 (2010). [CrossRef]
  20. H. Gao, J. Henzie, M. H. Lee, and T. W. Odom, “Screening plasmonic materials using pyramidal gratings,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20146–20151 (2008). [CrossRef] [PubMed]
  21. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005). [CrossRef] [PubMed]
  22. N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91(8), 083114 (2007). [CrossRef]
  23. D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express 16(5), 3114–3119 (2008). [CrossRef] [PubMed]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  25. Lumerical FDTD Solution, http://www.lumerical.com/ .
  26. W. Luo, W. van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, “Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays,” J. Phys. Chem. C 112(31), 11609–11613 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited