OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22142–22155

Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs

S. Hossein Mousavi, Alexander B. Khanikaev, Burton Neuner, III, David Y. Fozdar, Timothy D. Corrigan, Paul W. Kolb, H. Dennis Drew, Raymond J. Phaneuf, Andrea Alù, and Gennady Shvets  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22142-22155 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The collective effects in a periodic array of plasmonic double-antenna meta-molecules are studied. We experimentally observe that the collective behavior in this structure substantially differs from the one observed in their single-antenna counterparts. This behavior is explained using an analytical dipole model. We find that in the double-antenna case the effective dipole-dipole interaction is significantly modified and the transverse long-range interaction is suppressed, giving rise to the disappearance of Wood’s anomalies. Numerical calculations also show that such suppression of long-range interaction results in an anomalous spatial dispersion of the electric-dipolar mode, making it insensitive to the angle of incidence. In contrast, the quadrupolar mode of the antenna pair experiences strong spatial dispersion. These results show that collective effects in plasmonic metamaterials are very sensitive to the design and topology of meta-molecules. Our findings envision the possibility of suppressing the spatial dispersion effects to weaken the dependence of the metamaterials’ response on the incidence angle.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 22, 2011
Revised Manuscript: September 15, 2011
Manuscript Accepted: September 16, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

S. Hossein Mousavi, Alexander B. Khanikaev, Burton Neuner, David Y. Fozdar, Timothy D. Corrigan, Paul W. Kolb, H. Dennis Drew, Raymond J. Phaneuf, Andrea Alù, and Gennady Shvets, "Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs," Opt. Express 19, 22142-22155 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003). [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010). [CrossRef]
  3. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011). [CrossRef] [PubMed]
  4. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl Acad. Sci. U.S.A. 106, 19227–19232 (2009). [CrossRef] [PubMed]
  5. A. Yanik, A. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl Acad. Sci. U.S.A. 108, 11784–11789 (2011). [CrossRef] [PubMed]
  6. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007). [CrossRef]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London)391, 667–669 (1998). [CrossRef]
  8. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [PubMed]
  9. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  10. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008). [CrossRef] [PubMed]
  11. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80, 201401 (2009). [CrossRef]
  12. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004). [CrossRef] [PubMed]
  13. F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95, 233901 (2005). [CrossRef]
  14. S. H. Mousavi, A. B. Khanikaev, B. Neuner, Y. Avitzour, D. Korobkin, G. Ferro, and G. Shvets, “Highly confined hybrid spoof surface plasmons in ultrathin metal-dielectric heterostructures,” Phys. Rev. Lett. 105, 176803 (2010). [CrossRef]
  15. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004). [CrossRef] [PubMed]
  16. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004). [CrossRef] [PubMed]
  17. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat Nano 6, 423–427 (2011). [CrossRef]
  18. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
  19. V.G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008). [CrossRef] [PubMed]
  20. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006). [CrossRef]
  21. F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  22. R. W. Wood, “Films of minute metallic particles,” Phil. Mag. 4, 396 (1902).
  23. P. W. Kolb, T. D. Corrigan, H. D. Drew, A. B. Sushkov, R. J. Phaneuf, A. Khanikaev, S. H. Mousavi, and G. Shvets, “Bianisotropy and spatial dispersion in highly anisotropic near-infrared resonator arrays,” Opt. Express 18, 24025–24036 (2010). [CrossRef] [PubMed]
  24. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005). [CrossRef]
  25. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  26. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef] [PubMed]
  27. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011). [CrossRef] [PubMed]
  28. K. Kempa, R. Ruppin, and J. B. Pendry, “Electromagnetic response of a point-dipole crystal,” Phys.Rev. B 72, 205103 (2005). [CrossRef]
  29. D. H. Dawes, R. C. McPhedran, and L. B. Whitbourn, “Thin capacitive meshes on a dielectric boundary: theory and experiment,” Appl. Opt. 28, 3498–3510 (1989). [CrossRef] [PubMed]
  30. A. Alù and N. Engheta, “Guided Propagation along Quadrupolar Chains of Plasmonic Nanoparticles,” Phys. Rev. B 79, 235412 (2009). [CrossRef]
  31. A. Alù and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008). [CrossRef]
  32. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Let. 105, 126804 (2010). [CrossRef]
  33. A. Alù and N. Engheta, “The quest for magnetic plasmons at optical frequencies,” Opt. Express 17, 5723–5730 (2009). [CrossRef] [PubMed]
  34. X. M. Bendana and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17, 18826–18835 (2009). [CrossRef]
  35. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B 82, 155447 (2010). [CrossRef]
  36. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009). [CrossRef] [PubMed]
  37. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105, 266801 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited