OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22191–22197

High-Q, low index-contrast polymeric photonic crystal nanobeam cavities

Qimin Quan, Ian B. Burgess, Sindy K. Y. Tang, Daniel L. Floyd, and Marko Loncar  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 22191-22197 (2011)
http://dx.doi.org/10.1364/OE.19.022191


View Full Text Article

Enhanced HTML    Acrobat PDF (884 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design, fabrication and characterization of high-Q (Q=36,000) polymeric photonic crystal nanobeam cavities made of two polymers that have an ultra-low index contrast (ratio=1.15) and observed thermo-optical bistability at hundred microwatt power level. Due to the extended evanescent field and small mode volumes, polymeric nanobeam cavities are ideal platform for ultra-sensitive biochemical sensing. We demonstrate that these sensors have figures of merit (FOM=9190) two orders of magnitude greater than surface plasmon resonance based sensors, and outperform the commercial BiacoreTM sensors. The demonstration of high-Q cavity in low-index-contrast polymers can open up versatile applications using a broad range of functional and flexible polymeric materials.

© 2011 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.5470) Materials : Polymers
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 15, 2011
Revised Manuscript: September 18, 2011
Manuscript Accepted: September 19, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Citation
Qimin Quan, Ian B. Burgess, Sindy K. Y. Tang, Daniel L. Floyd, and Marko Loncar, "High-Q, low index-contrast polymeric photonic crystal nanobeam cavities," Opt. Express 19, 22191-22197 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-22191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater.14, 1339–1365 (2002). [CrossRef]
  2. M. C. Choi, Y. Kim, and C-S. Ha, “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci.33, 581–630 (2008). [CrossRef]
  3. S-I. Na, S-S. Kim, J. Jo, and D-Y Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater.20, 4061–4067 (2008). [CrossRef]
  4. H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon.3, 649–653 (2009). [CrossRef]
  5. D. Ghezzi, M. R. Antognazza, M. D. Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun.2:166 (2011). [CrossRef] [PubMed]
  6. P. Broz, (Editor) Polymer-Based Nanostructures, 1st Edition. Royal Society of Chemistry (RSC) Publishing (2010). [CrossRef]
  7. C. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technnigue,” J. Vac. Sci. Technol. B20, 2862 (2002). [CrossRef]
  8. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer Micro-Ring Filters and Modulators,” J. Lightwave Technol.20, 1968 (2002).
  9. Y. Huang, G. T. Paloczi, J. Scheuer, and A. Yariv, “Soft lithography replication of polymeric microring optical resonators,” Opt. Express11, 2452 (2003). [CrossRef] [PubMed]
  10. A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett.29, 533 (2004). [CrossRef] [PubMed]
  11. M. Khan, T. M. Babinec, M. W. McCutcheon, P.B. Deotare, and M Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett.36, 421 (2011). [CrossRef] [PubMed]
  12. G. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96, 031107 (2010). [CrossRef]
  13. M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett.87, 151119 (2005). [CrossRef]
  14. L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett.8, 260 (2008). [CrossRef]
  15. A. M. Adawi, M. M. Murshidy, P. W. Fry, and D. G. Lidzey, “An optical nanocavity incorporating a fluorescent organic dye having a high quality factor,” ACS Nano4, 3039–3044 (2010). [CrossRef] [PubMed]
  16. M. M. Murshidy, A. M. Adawi, P. W. Fry, and D. G. Lidzey, “A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye,” Appl. Phys. Lett.97, 153303 (2010). [CrossRef]
  17. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Letts.96, 203102 (2010). [CrossRef]
  18. Q. Quan and M. Loncar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011). [CrossRef]
  19. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett.35, 379 (1979). [CrossRef]
  20. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29, 2387 (2004). [CrossRef] [PubMed]
  21. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14, 377 (2006). [CrossRef] [PubMed]
  22. L. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17, 21108 (2009). [CrossRef] [PubMed]
  23. T. Ling, S-L Chen, and L. J. Guo, “Fabrication and Characterization of High Q Polymer Micro-ring Resonator and Its Application as a Sensitive Ultrasonic Detector,” Opt. Express19, 861–869 (2011) [CrossRef] [PubMed]
  24. D. Chu, M. Touzelbaev, K. E. Goodson, S. Babin, and R. F. Pease, “Thermal conductivity measurements of thin film resist,” J. Vac. Sci. Technol. B19, 2874 (2001). [CrossRef]
  25. O. Beyer, I. Nee, F. Havermeyer, and K. Buse, “Holographic Recording of Bragg Gratings for Wavelength Division Multiplexing in Doped and Partially Polymerized Poly(methyl methacrylate),” Appl. Opt.42, 30 (2003). [CrossRef] [PubMed]
  26. W. R. Folks, J. Ginn, D. Shelton, J. Tharp, and G. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Stat. Sol. (c)5, 1113 (2008). [CrossRef]
  27. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8 (2008). [CrossRef] [PubMed]
  28. A. M. Basedow, K. H. ebert, and U. Ruland, “Specific Refractive Index Increments of Dextran Fractions of Different Molecular Weights,” Makromol. Chem.179, 1351–1353 (1978). [CrossRef]
  29. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16, 1020 (2008). [CrossRef] [PubMed]
  30. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442 (2008). [CrossRef] [PubMed]
  31. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited