OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22198–22207

Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion

Kelley Rivoire, Sonia Buckley, and Jelena Vučković  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22198-22207 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2007 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a photonic crystal nanocavity with multiple spatially overlapping resonances that can serve as a platform for nonlinear frequency conversion. We show nonlinear characterization of structures with two resonances nearly degenerate in frequency. We also demonstrate structures with resonances separated by up to 523 nm.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(230.5750) Optical devices : Resonators
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: June 29, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 6, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Kelley Rivoire, Sonia Buckley, and Jelena Vučković, "Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion," Opt. Express 19, 22198-22207 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010). [CrossRef]
  2. B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vučković, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011). [CrossRef]
  3. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007). [CrossRef] [PubMed]
  4. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005). [CrossRef] [PubMed]
  5. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultrahigh-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]
  6. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008). [CrossRef] [PubMed]
  7. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  8. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ∼ 109,” J. Lightwave Technol. 26, 1532–1539 (2008). [CrossRef]
  9. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007). [CrossRef] [PubMed]
  10. A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008). [CrossRef]
  11. M. Liscidini and L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar microcavities,” Appl. Phys. Lett. 85, 1883–1885 (2004). [CrossRef]
  12. I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009). [CrossRef] [PubMed]
  13. Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34, 2694–2696 (2009). [CrossRef] [PubMed]
  14. M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689–22703 (2009). [CrossRef]
  15. M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal cavities,” Appl. Phys. Lett. 98, 111117 (2011). [CrossRef]
  16. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009). [CrossRef]
  17. K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010). [CrossRef]
  18. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007). [CrossRef]
  19. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005). [CrossRef]
  20. M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010). [CrossRef] [PubMed]
  21. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, to be published (2011). [CrossRef]
  22. J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997). [CrossRef]
  23. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008). [CrossRef]
  24. P. Lalanne, S. Mias, and J. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004). [CrossRef] [PubMed]
  25. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13, 245–255 (2005). [CrossRef] [PubMed]
  26. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  27. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1998). [CrossRef]
  28. Q. Quan, P. Deotare, and M. Lončar, “Photonic crystal nanocavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010). [CrossRef]
  29. I. Luxmoore, E. Ahmadi, A. Fox, M. Hugues, and M. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011). [CrossRef]
  30. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000). [CrossRef] [PubMed]
  31. K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006). [CrossRef]
  32. K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008). [CrossRef]
  33. H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
  34. A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009). [CrossRef]
  35. M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071107 (2009). [CrossRef]
  36. M. Banaee and J. F. Young, “Squeezed state generation in photonic crystal microcavities,” Opt. Express 16, 20908–20919 (2008). [CrossRef] [PubMed]
  37. W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006). [CrossRef] [PubMed]
  38. K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011). [CrossRef]
  39. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited