OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22208–22218

Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process

Mizuki Shinkawa, Norihiro Ishikura, Yosuke Hama, Keijiro Suzuki, and Toshihiko Baba  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 22208-22218 (2011)
http://dx.doi.org/10.1364/OE.19.022208


View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied low-dispersion slow light and its nonlinear enhancement in photonic crystal waveguides. In this work, we fabricated the waveguides using Si CMOS-compatible process. It enables us to integrate spotsize converters, which greatly simplifies the optical coupling from fibers as well as demonstration of the nonlinear enhancement. Two-photon absorption, self-phase modulation and four-wave mixing were observed clearly for picosecond pulses in a 200-μm-long device. In comparison with Si wire waveguides, a 60 − 120 fold higher nonlinearity was evaluated for a group index of 51. Unique intensity response also occurred due to the specific transmission spectrum and enhanced nonlinearities. Such slow light may add various functionalities in Si photonics, while loss reduction is desired for ensuring the advantage of slow light.

© 2011 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.4320) Optical devices : Nonlinear optical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 1, 2011
Revised Manuscript: September 18, 2011
Manuscript Accepted: September 18, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Citation
Mizuki Shinkawa, Norihiro Ishikura, Yosuke Hama, Keijiro Suzuki, and Toshihiko Baba, "Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process," Opt. Express 19, 22208-22218 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-22208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93(9), 091114 (2003).
  2. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express14(12), 5524–5534 (2006). [CrossRef] [PubMed]
  3. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express13(12), 4629–4637 (2005). [CrossRef] [PubMed]
  4. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008). [CrossRef]
  5. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008). [CrossRef]
  6. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett.32(20), 2981–2983 (2007). [CrossRef] [PubMed]
  7. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  8. K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express18(25), 26675–26685 (2010). [CrossRef] [PubMed]
  9. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  10. J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B78(15), 153101 (2008). [CrossRef]
  11. L. Ansheng, L. Ling, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron.16(1), 23–32 (2010). [CrossRef]
  12. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010). [CrossRef]
  13. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  14. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys.45(8B), 6658–6662 (2006). [CrossRef]
  15. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, “Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate,” IEEE J. Quantum Electron.38(7), 743–752 (2002). [CrossRef]
  16. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett.85(21), 4866–4868 (2004). [CrossRef]
  17. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express16(21), 17076–17081 (2008). [CrossRef] [PubMed]
  18. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron.16(1), 192–199 (2010). [CrossRef]
  19. M. Spasenović, T. P. White, S. Ha, A. A. Sukhorukov, T. Kampfrath, Y. S. Kivshar, C. M. de Sterke, T. F. Krauss, and L. K. Kuipers, “Experimental observation of evanescent modes at the interface to slow-light photonic crystal waveguides,” Opt. Lett.36(7), 1170–1172 (2011). [CrossRef] [PubMed]
  20. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005). [CrossRef]
  21. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express17(25), 22393–22400 (2009). [CrossRef] [PubMed]
  22. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18(22), 22915–22927 (2010). [CrossRef] [PubMed]
  23. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited