OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22219–22226

Nanodiamond induced high-Q resonances in defect-free photonic crystal slabs

Snjezana Tomljenovic-Hanic, Andrew D. Greentree, Brant C. Gibson, Timothy J. Karle, and Steven Prawer  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22219-22226 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that a high-Q photonic crystal cavity can be induced by the presence of a nanodiamond (ND) on the air-hole side wall in an otherwise defect-free photonic crystal. The ND itself acts as the perturbation, increasing the average refractive index, necessary to define the cavity; therefore self-aligned with the cavity. Such cavities are potentially useful for exploiting cavity quantum electro-dynamic interactions between fluorescent NDs and the cavity. A single ND can induce a cavity with Q~3 × 104 and two or more ND particles can induce a cavity with Q~1.5 × 105. We show numerically that perturbing the position and the size of the NDs has little effect on the cavity properties.

© 2011 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Photonic Crystals

Original Manuscript: July 21, 2011
Revised Manuscript: August 22, 2011
Manuscript Accepted: August 22, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Snjezana Tomljenovic-Hanic, Andrew D. Greentree, Brant C. Gibson, Timothy J. Karle, and Steven Prawer, "Nanodiamond induced high-Q resonances in defect-free photonic crystal slabs," Opt. Express 19, 22219-22226 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002). [CrossRef] [PubMed]
  2. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011). [CrossRef]
  3. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14(8), 3556–3562 (2006). [CrossRef] [PubMed]
  4. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of ultra-thin single crystal diamond membranes,” Adv. Mater. (Deerfield Beach Fla.) 20(24), 4793–4798 (2008). [CrossRef]
  5. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. A. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010). [CrossRef] [PubMed]
  6. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011). [CrossRef]
  7. I. Bayn, B. Meyler, A. Lahav, J. Salzman, R. Kalish, B. A. Fairchild, S. Prawer, M. Barth, O. Benson, T. Wolf, P. Siyushev, F. Jelezko, and J. Wrachtrup, “Processing of photonic crystal nanocavity for quantum information in diamond,” Diamond Related Materials 20(7), 937–943 (2011). [CrossRef]
  8. S. Kühn, C. Hettich, C. Schmitt, J.-Ph. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202(Pt 1), 2–6 (2001). [CrossRef] [PubMed]
  9. J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, “Diamond chemical vapour deposition on optical fibres for fluorescence waveguiding,” Appl. Phys. Lett. 86(13), 134104 (2005). [CrossRef]
  10. T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11(1), 198–202 (2011). [CrossRef] [PubMed]
  11. M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar V, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Diamond in tellurite glass: a new medium for quantum information,” Adv. Mater. (Deerfield Beach Fla.) 23(25), 2806–2810 (2011). [CrossRef] [PubMed]
  12. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9(4), 1694–1698 (2009). [CrossRef] [PubMed]
  13. R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stohr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009). [CrossRef]
  14. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010). [CrossRef] [PubMed]
  15. P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17(10), 8081–8097 (2009). [CrossRef] [PubMed]
  16. Y. S. Park, A. K. Cook, and H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006). [CrossRef] [PubMed]
  17. E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express 17(14), 11287–11293 (2009). [CrossRef] [PubMed]
  18. M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34(7), 1108–1110 (2009). [CrossRef] [PubMed]
  19. G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455(7213), 648–651 (2008). [CrossRef] [PubMed]
  20. A. Cuche, Y. Sonnefraud, O. Faklaris, D. Garrot, J. P. Boudou, T. Sauvage, J. F. Roch, F. Treussart, and S. Huant, “Diamond nanoparticles as photoluminescent nanoprobes for biology and near-field optics,” J. Lumin. 129(12), 1475–1477 (2009). [CrossRef]
  21. J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009). [CrossRef] [PubMed]
  22. S. Tomljenovic-Hanic and C. M. de Sterke, “Design of ultrahigh-Q photoinduced cavities in defect-free photonic crystal slabs,” Opt. Express 18(20), 21397–21403 (2010). [CrossRef] [PubMed]
  23. J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals,” Nano Lett. 7(11), 3433–3437 (2007). [CrossRef] [PubMed]
  24. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007). [CrossRef] [PubMed]
  25. S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009). [CrossRef] [PubMed]
  26. D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005). [CrossRef] [PubMed]
  27. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16(23), 19136–19145 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited