OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22227–22241

Modeling of coupled-resonator optical waveguide (CROW) based refractive index sensors using pixelized spatial detection at a single wavelength

Ting Lei and Andrew W. Poon  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 22227-22241 (2011)
http://dx.doi.org/10.1364/OE.19.022227


View Full Text Article

Enhanced HTML    Acrobat PDF (4721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We model and analyze coupled-resonator optical waveguide (CROW) based refractive index (RI) sensors using pixelized spatial detection. Our modeled cascaded Fabry-Perot (FP) CROWs reveal that the intra-band states mode-field distributions vary upon effective RI change at a single wavelength. The spatial Fourier transform of the CROW mode-field distributions, with each cavity field intensity integrated as a pixel, shows spatial frequency peak shift, which constitutes the basis of such a spatial domain sensor. The spatial domain sensing performance depends on the cavity number, the cavity length and the inter-cavity coupling. Our modeled 21-element CROW sensor attains a detection limit of 10−4 refractive index unit (RIU) with a sensing dynamic range of 10−3 RIU. Detailed analysis of the spatial frequency harmonic peak amplitude variation further suggests an improved detection limit. Finite-difference time-domain (FDTD) simulations of an 11-element microring CROW device shows sensitivity consistent with the FP modeling.

© 2011 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.5750) Optical devices : Resonators
(230.4555) Optical devices : Coupled resonators

ToC Category:
Coupled Resonators

History
Original Manuscript: July 19, 2011
Revised Manuscript: August 27, 2011
Manuscript Accepted: September 22, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Citation
Ting Lei and Andrew W. Poon, "Modeling of coupled-resonator optical waveguide (CROW) based refractive index sensors using pixelized spatial detection at a single wavelength," Opt. Express 19, 22227-22241 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-22227


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  2. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express16(19), 15137–15148 (2008). [CrossRef] [PubMed]
  3. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett.32(21), 3080–3082 (2007). [CrossRef] [PubMed]
  4. A. Nitkowski, A. Baeumner, and M. Lipson, “On-chip spectrophotometry for bioanalysis using microring resonators,” Biomed. Opt. Express2(2), 271–277 (2011). [CrossRef] [PubMed]
  5. J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008). [CrossRef] [PubMed]
  6. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010). [CrossRef] [PubMed]
  7. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem.399(1), 205–211 (2011). [CrossRef] [PubMed]
  8. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett.83(8), 1527–1529 (2003). [CrossRef]
  9. T. Claes, J. G. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photonics J.1(3), 197–204 (2009). [CrossRef]
  10. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81(22), 9499–9506 (2009). [CrossRef] [PubMed]
  11. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24(11), 711–713 (1999). [CrossRef] [PubMed]
  12. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, V. van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004). [CrossRef]
  13. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  14. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett.31(4), 456–458 (2006). [CrossRef] [PubMed]
  15. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett.33(20), 2389–2391 (2008). [CrossRef] [PubMed]
  16. X. Luo and A. W. Poon, “Many-element coupled-resonator optical waveguides using gapless-coupled microdisk resonators,” Opt. Express17(26), 23617–23628 (2009). [CrossRef] [PubMed]
  17. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun2, 296 (2011). [CrossRef] [PubMed]
  18. C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupled-resonator optical waveguides,” J. Opt. Soc. Am. B26(4), 858–866 (2009). [CrossRef]
  19. S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics2(2), 90–93 (2008). [CrossRef]
  20. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  21. M. L. Cooper, G. Gupta, J. S. Park, M. A. Schneider, I. B. Divliansky, and S. Mookherjea, “Quantitative infrared imaging of silicon-on-insulator microring resonators,” Opt. Lett.35(5), 784–786 (2010). [CrossRef] [PubMed]
  22. T. Lei and A. W. Poon, “Coupled-resonator optical waveguide sensors using multi-channel spatial detection,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThQ5.
  23. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt.41(19), 3978–3987 (2002). [CrossRef] [PubMed]
  24. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. A21(9), 1665–1673 (2004). [CrossRef]
  25. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007), pp. 184–194.
  26. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express18(25), 26505–26516 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited