OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22248–22257

Broadband circulators based on directional coupling of one-way waveguides

Wenjun Qiu, Zheng Wang, and Marin Soljačić  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22248-22257 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonator-based optical circulators are fundamentally bandwidth-limited by their quality factors. We propose a new type of circulator based on directional coupling between one-way photonic chiral edge states and conventional two-way waveguides. The operational bandwidth of such circulators is tied to the bandwidth of the directional waveguide coupler and has the potential for simultaneous broadband operation and small device footprint.

© 2011 OSA

OCIS Codes
(230.3810) Optical devices : Magneto-optic systems
(230.5298) Optical devices : Photonic crystals

ToC Category:
Coupled Resonators

Original Manuscript: June 29, 2011
Revised Manuscript: August 16, 2011
Manuscript Accepted: September 4, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Wenjun Qiu, Zheng Wang, and Marin Soljačić, "Broadband circulators based on directional coupling of one-way waveguides," Opt. Express 19, 22248-22257 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004). [CrossRef]
  2. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008). [CrossRef]
  3. A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95(1), 011101 (2009). [CrossRef]
  4. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105(12), 126804 (2010). [CrossRef] [PubMed]
  5. D. Jalas, A. Petrov, M. Krause, J. Hampe, and M. Eich, “Resonance splitting in gyrotropic ring resonators,” Opt. Lett. 35(20), 3438–3440 (2010). [CrossRef] [PubMed]
  6. J. Zheng, Optical Frequency-modulated Continuous-wave (FMCW) Interferometry (Springer, 2005).
  7. M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83(11), 6768–6770 (1998). [CrossRef]
  8. M. Levy, I. Ilic, R. Scarmozzino, R. Osgood, R. Wolfe, C. J. Gutierrez, and G. A. Prinz, “Thin-film-magnet magneto-optic waveguide isolator,” IEEE Photonics Technol. Lett. 5(2), 198–200 (1993). [CrossRef]
  9. Z. Wang and S. Fan, “Magneto-optical defects in two-dimensional photonic crystals,” Appl. Phys. B 81(2-3), 369–375 (2005). [CrossRef]
  10. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30(15), 1989–1991 (2005). [CrossRef] [PubMed]
  11. Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photonics Nanostruct. Fundam. Appl. 4, 132–140 (2006).
  12. W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35(4), 568–570 (2010). [CrossRef] [PubMed]
  13. K. Yayoi, K. Tobinaga, Y. Kaneko, A. V. Baryshev, and M. Inoue, “Optical waveguide circulators based on two-dimensional magneto photonic crystals: Numerical simulation for structure simplification and experimental verification,” J. Appl. Phys. 109, 07B750 (2011).
  14. H. Zhu and C. Jiang, “Optical isolation based on Nonreciprocal Micro-Ring Resonator,” J. Lightwave Technol. 29(11), 1647–1651 (2011). [CrossRef]
  15. E. Ohm, “A Broad-Band Microwave Circulator,” IRE Trans. Microwave Theor. Tech. 4(4), 210–217 (1956). [CrossRef]
  16. J. Helszajn, Nonreciprocal Microwave Junctions and Circulators (Wiley, 1975).
  17. M. Lohmeyer, M. Shamonin, and P. Hertel, “Integrated optical circulator based on radiatively coupled magneto-optic waveguides,” Opt. Eng. 36(3), 889 (1997). [CrossRef]
  18. N. Sugimoto, T. Shintaku, A. Tate, H. Terui, M. Shimokozono, E. Kubota, M. Ishii, and Y. Inoue, “Waveguide polarization-independent optical circulator,” IEEE Photon. Technol. Lett. 11(3), 355–357 (1999). [CrossRef]
  19. J. Fujita, “Hybrid-integrated optical isolators and circulators,” in Proceedings Of SPIE (SPIE, 2002), Vol. 4652, pp. 77–85.
  20. N. Hanashima, K. Hata, R. Mochida, T. Oikawa, T. Kineri, Y. Satoh, and S. Iwatsuka, “Hybrid Optical Circulator Using Garnet–Quartz Composite Embedded in Planar Waveguides,” IEEE Photon. Technol. Lett. 16(10), 2269–2271 (2004). [CrossRef]
  21. D. M. Pozar, “Ferrite Circulators,” in Microwave Engineering, 3rd ed. (John Wiley & Sons, Inc., 2005), pp. 476–481.
  22. F. D. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008). [CrossRef] [PubMed]
  23. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008). [CrossRef] [PubMed]
  24. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008). [CrossRef] [PubMed]
  25. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009). [CrossRef] [PubMed]
  26. Q. Wang, Z. Ouyang, and Q. Liu, “Multiport photonic crystal circulators created by cascading magneto-optical cavities,” J. Opt. Soc. Am. B 28(4), 703 (2011). [CrossRef]
  27. K. Chiu and J. Quinn, “Magnetoplasma Surface Waves in Polar Semiconductors: Retardation Effects,” Phys. Rev. Lett. 29(9), 600–603 (1972). [CrossRef]
  28. R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974). [CrossRef]
  29. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106(9), 093903 (2011). [CrossRef] [PubMed]
  30. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]
  31. H. A. Haus, Waves and Fields In Optoelectronics (Prentice-Hall, 1984), Vol. 32.
  32. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011). [CrossRef]
  33. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited