OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22258–22267

Influence of micro-joints formed between spheres in coupled-resonator optical waveguide

Tadashi Mitsui, Tsunenobu Onodera, Yutaka Wakayama, Takeru Hayashi, Naoki Ikeda, Yoshimasa Sugimoto, Tadashi Takamasu, and Hidetoshi Oikawa  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22258-22267 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light propagation is simulated through coupled-resonator optical waveguides (CROWs) composed of seven transparent polystyrene microspheres, including micro-joints formed between the spheres. In nanojet-induced mode (NIM) light propagation, the micro-joints increased the optical coupling between microspheres drastically, and the light confinement by individual microspheres weakened as the micro-joint diameter increases. These results suggest that we can control NIM light propagation by changing the micro-joint diameter; this amounts to a nanojet throttle valve.

© 2011 OSA

OCIS Codes
(160.5470) Materials : Polymers
(160.6060) Materials : Solgel
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(180.4243) Microscopy : Near-field microscopy
(230.4555) Optical devices : Coupled resonators

ToC Category:
Coupled Resonators

Original Manuscript: July 1, 2011
Revised Manuscript: August 2, 2011
Manuscript Accepted: August 22, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Tadashi Mitsui, Tsunenobu Onodera, Yutaka Wakayama, Takeru Hayashi, Naoki Ikeda, Yoshimasa Sugimoto, Tadashi Takamasu, and Hidetoshi Oikawa, "Influence of micro-joints formed between spheres in coupled-resonator optical waveguide," Opt. Express 19, 22258-22267 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44(7), 475–478 (1980). [CrossRef]
  2. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005). [CrossRef] [PubMed]
  3. B. M. Möller, U. Woggon, and M. V. Artemyev, “Coupled-resonator optical waveguides doped with nanocrystals,” Opt. Lett. 30(16), 2116–2118 (2005). [CrossRef] [PubMed]
  4. R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: From microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008). [CrossRef]
  5. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef] [PubMed]
  6. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004). [CrossRef]
  7. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004). [CrossRef]
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  9. J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006). [CrossRef] [PubMed]
  10. S. Mookherjea, “Dispersion characteristics of coupled-resonator optical waveguides,” Opt. Lett. 30(18), 2406–2408 (2005). [CrossRef] [PubMed]
  11. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  12. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004). [CrossRef] [PubMed]
  13. S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres,” Opt. Express 14(20), 9460–9466 (2006). [CrossRef] [PubMed]
  14. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007). [CrossRef] [PubMed]
  15. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Light propagation within colloidal crystal wire fabricated by a dewetting process,” Nano Lett. 8(3), 853–858 (2008). [CrossRef] [PubMed]
  16. S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008). [CrossRef]
  17. T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010). [CrossRef] [PubMed]
  18. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004). [CrossRef] [PubMed]
  19. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006). [CrossRef] [PubMed]
  20. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WGmode coupled resonator optical waveguide bends,” J. Lightwave Technol. 25(9), 2487–2494 (2007). [CrossRef]
  21. S. V. Boriskina, “Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides,” Opt. Express 15(25), 17371–17379 (2007). [CrossRef] [PubMed]
  22. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31(3), 338–340 (2006). [CrossRef] [PubMed]
  23. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008). [CrossRef] [PubMed]
  24. M. Benyoucef, J.-B. Shim, J. Wiersig, and O. G. Schmidt, “Quality-factor enhancement of supermodes in coupled microdisks,” Opt. Lett. 36(8), 1317–1319 (2011). [CrossRef] [PubMed]
  25. A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997). [CrossRef]
  26. Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(36), 8718–8729 (2001). [CrossRef] [PubMed]
  27. T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005). [CrossRef]
  28. S. Grego, T. W. Jarvis, B. R. Stoner, and J. S. Lewis, “Template-directed assembly on an ordered microsphere array,” Langmuir 21(11), 4971–4975 (2005). [CrossRef] [PubMed]
  29. T. Onodera, Y. Takaya, T. Mitsui, Y. Wakayama, and H. Oikawa, “Ordered array of polymer microspheres on patterned silicon substrate fabricated using step-by-step deposition method,” Jpn. J. Appl. Phys. 47(2), 1404–1407 (2008). [CrossRef]
  30. M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited