OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22268–22279

Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers

F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22268-22279 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (12598 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the possibility of realizing adiabatic surface plasmon polaritons compression on metallic conical tips built-in on AFM cantilevers by means of different approaches. The problem is faced considering the role of the source, when linear and radial polarizations are assumed, associated to different fabrication schemes. Nano-patterned devices properly combined with metallic conical tips can affect the adiabatic characteristic of the surface electric field. The results are analyzed in terms of tradeoff between fabrication difficulties and device performances. Suggestions on the best possible scheme are provided.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics Devices

Original Manuscript: July 8, 2011
Revised Manuscript: August 25, 2011
Manuscript Accepted: August 26, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, "Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers," Opt. Express 19, 22268-22279 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Cabrini, A. Carpentiero, R. Kumar, L. Businaro, P. Candeloro, M. Prasciolu, A. Gosparini, C. Andreani, M. De Vittorio, T. Stomeo, and E. Di Fabrizio, “Focused ion beam lithography for two dimensional array structures for photonic applications,” Microelectron. Eng.78–79, 11–15 (2005). [CrossRef]
  2. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4, 396 (1902).
  3. U. Fano, “Atomic theory of electromagnetic interactions in dense materials,” Phys. Rev.103(5), 1202–1218 (1956). [CrossRef]
  4. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.216(4), 398–410 (1968). [CrossRef]
  5. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturf.23A, 2135–2136 (1968).
  6. F. De Angelis, C. Liberale, M. L. Coluccio, G. Cojoc, and E. Di Fabrizio, “Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies,” Nanoscale3(7), 2689–2696 (2011), doi:. [CrossRef] [PubMed]
  7. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  8. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett.8(8), 2321–2327 (2008). [CrossRef] [PubMed]
  9. Y. Saito and P. Verma, “Imaging and spectroscopy through plasmonic nano-probe,” Eur. Phys. J. Appl. Phys.46(2), 20101 (2009). [CrossRef]
  10. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010). [CrossRef] [PubMed]
  11. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett.10(4), 1369–1373 (2010). [CrossRef] [PubMed]
  12. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett.10(2), 592–596 (2010). [CrossRef] [PubMed]
  13. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11(3), 1201–1207 (2011). [CrossRef] [PubMed]
  14. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785 (2000). [CrossRef]
  15. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. Proietti Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super hydrophobic delivery of few molecules to plasmonic nanofocusing structures,” Nat. Photonics (accepted for publication).
  16. M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express18(10), 10878–10887 (2010). [CrossRef] [PubMed]
  17. C. S. T. Microwave Studio, 2010, www.cst.com .
  18. Lumerical Solutions, www.lumerical.com .
  19. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  20. A. B. Djurišic and E. H. Li, “Modeling the index of refraction of insulating solids with a modified Lorentz oscillator model,” Appl. Opt.37(22), 5291–5297 (1998). [CrossRef] [PubMed]
  21. Y. Fu, Y. Liu, X. Zhou, Z. Xu, and F. Fang, “Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits,” Opt. Express18(4), 3438–3443 (2010). [CrossRef] [PubMed]
  22. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000). [CrossRef] [PubMed]
  23. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000). [CrossRef] [PubMed]
  24. R. Proietti Zaccaria, S. Shoji, H. B. Sun, and S. Kawata, “Multi-shot interference approach for any kind of Bravais lattice,” Appl. Phys. B93(1), 251–256 (2008). [CrossRef]
  25. R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express16(19), 14812–14820 (2008). [CrossRef] [PubMed]
  26. A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. K. De Vittorio, “Resonant second-harmonic generation in a GaAs photonic crystal waveguide,” Phys. Rev. B68(16), 161306 (2003). [CrossRef]
  27. A. M. Malvezzi, F. Cattaneo, G. Vecchi, M. Falasconi, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, “Second-harmonic generation in reflection and diffraction by a GaAs photonic-crystal waveguide,” J. Opt. Soc. Am. B19(9), 2122 (2002). [CrossRef]
  28. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express15(24), 16161–16176 (2007). [CrossRef] [PubMed]
  29. G. Das, F. Mecarini, F. Gentile, F. De Angelis, H. Mohan Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. Di Fabrizio, “Nano-patterned SERS substrate: application for protein analysis vs. temperature,” Biosens. Bioelectron.24(6), 1693–1699 (2009). [CrossRef] [PubMed]
  30. M. Galli, M. Agio, L. C. Andreani, L. Atzeni, D. Bajoni, G. Guizzetti, L. Businaro, E. Di Fabrizio, F. Romanato, and A. Passaseo, “Optical properties and photonic bands of GaAs photonic crystal waveguides with tilted square lattice,” Eur. Phys. J. B27(1), 79–87 (2002). [CrossRef]
  31. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett.10(3), 891–895 (2010). [CrossRef] [PubMed]
  32. H. Zhao, R. Proietti Zaccaria, P. Verma, J. Song, and H. Sun, “Single-mode operation regime for 12-fold index-guiding quasicrystal optical fibers,” Appl. Phys. B100(3), 499–503 (2010). [CrossRef]
  33. J. F. Song and R. Proietti Zaccaria, “Manipulation of light transmission through sub-wavelength hole array,” J. Opt. A, Pure Appl. Opt.9(9), S450–S457 (2007). [CrossRef]
  34. S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B Condens. Matter38(18), 12966–12976 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited