OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22305–22315

Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates

Svetlana V. Boriskina and Björn M. Reinhard  »View Author Affiliations


Optics Express, Vol. 19, Issue 22, pp. 22305-22315 (2011)
http://dx.doi.org/10.1364/OE.19.022305


View Full Text Article

Enhanced HTML    Acrobat PDF (1980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A major challenge for plasmonics as an enabling technology for quantum information processing is the realization of active spatio-temporal control of light on the nanoscale. The use of phase-shaped pulses or beams enforces specific requirements for on-chip integration and imposes strict design limitations. We introduce here an alternative approach, which is based on exploiting the strong sub-wavelength spatial phase modulation in the near-field of resonantly-excited high-Q optical microcavities integrated into plasmonic nanocircuits. Our theoretical analysis reveals the formation of areas of circulating powerflow (optical vortices) in the near-fields of optical microcavities, whose positions and mutual coupling can be controlled by tuning the microcavities parameters and the excitation wavelength. We show that optical powerflow though nanoscale plasmonic structures can be dynamically molded by engineering interactions of microcavity-induced optical vortices with noble-metal nanoparticles. The proposed strategy of re-configuring plasmonic nanocircuits via locally-addressable photonic elements opens the way to develop chip-integrated optoplasmonic switching architectures, which is crucial for implementation of quantum information nanocircuits.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(140.3945) Lasers and laser optics : Microcavities
(230.4555) Optical devices : Coupled resonators
(250.5403) Optoelectronics : Plasmonics
(250.6715) Optoelectronics : Switching

ToC Category:
Integrated Optics Devices

History
Original Manuscript: August 15, 2011
Revised Manuscript: September 15, 2011
Manuscript Accepted: September 15, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Citation
Svetlana V. Boriskina and Björn M. Reinhard, "Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates," Opt. Express 19, 22305-22315 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-22305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. J. Halas, “Connecting the dots: reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. U.S.A.106(10), 3643–3644 (2009). [CrossRef] [PubMed]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  3. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009). [CrossRef]
  4. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1(7), 402–406 (2007). [CrossRef]
  5. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8(5), 1506–1510 (2008). [CrossRef] [PubMed]
  6. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97(4), 041107 (2010). [CrossRef]
  7. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol.6(2), 107–111 (2011). [CrossRef] [PubMed]
  8. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009). [CrossRef]
  9. M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009). [CrossRef] [PubMed]
  10. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett.10(6), 2105–2110 (2010). [CrossRef] [PubMed]
  11. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007). [CrossRef] [PubMed]
  12. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, and D. V. Voronine, “Spatiotemporal control of nanooptical excitations,” Proc. Natl. Acad. Sci. U.S.A.107(12), 5329–5333 (2010). [CrossRef] [PubMed]
  13. G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams,” Nano Lett.9(10), 3608–3611 (2009). [CrossRef] [PubMed]
  14. G. Volpe, G. Molina-Terriza, and R. Quidant, “Deterministic subwavelength control of light confinement in nanostructures,” Phys. Rev. Lett.105(21), 216802 (2010). [CrossRef] [PubMed]
  15. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002). [CrossRef] [PubMed]
  16. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics5(6), 360–363 (2011). [CrossRef]
  17. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006). [CrossRef] [PubMed]
  18. K. D. Alexander, K. Skinner, S. Zhang, H. Wei, and R. Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate,” Nano Lett.10(11), 4488–4493 (2010). [CrossRef] [PubMed]
  19. F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett.10(5), 1787–1792 (2010). [CrossRef] [PubMed]
  20. S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3147–3151 (2011). [CrossRef] [PubMed]
  21. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011). [CrossRef]
  22. S. Götzinger, L. de S. Menezes, A. Mazzei, S. Kühn, V. Sandoghdar, and O. Benson, “Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator,” Nano Lett.6(6), 1151–1154 (2006). [CrossRef] [PubMed]
  23. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano4(6), 3390–3396 (2010). [CrossRef] [PubMed]
  24. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano5(4), 2831–2838 (2011). [CrossRef] [PubMed]
  25. M.-S. Kim, T. Scharf, S. Muhlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett.98(19), 191114 (2011). [CrossRef]
  26. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  27. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science328(5982), 1135–1138 (2010). [CrossRef] [PubMed]
  28. K. Bao, N. Mirin, and P. Nordlander, “Fano resonances in planar silver nanosphere clusters,” Appl. Phys., A Mater. Sci. Process.100(2), 333–339 (2010). [CrossRef]
  29. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  30. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A10(2), 343–352 (1993). [CrossRef]
  31. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74(2), 259–266 (2006). [CrossRef]
  32. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K G, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express19(6), 4949–4956 (2011). [CrossRef] [PubMed]
  33. M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” in Progress in Optics Vol 53, E. Wolf, ed. (Elsevier, 2009), pp. 293–363.
  34. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  35. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A11(11), 2851–2861 (1994). [CrossRef]
  36. Y. L. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt.34(21), 4573–4588 (1995). [CrossRef] [PubMed]
  37. S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B23(8), 1565–1573 (2006). [CrossRef]
  38. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008). [CrossRef] [PubMed]
  39. M. Chamanzar, E. Shah Hosseini, S. Yegnanarayanan, and A. Adibi, “Hybrid plasmonic-photonic resonators for sensing and spectroscopy,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper QTuE4.
  40. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett.98(24), 243104 (2011). [CrossRef]
  41. S. Zou and G. C. Schatz, “Combining micron-size glass spheres with silver nanoparticles to produce extraordinary field enhancements for surface-enhanced Raman scattering applications,” Isr. J. Chem.46, 293–297 (2006).
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  43. D. Mao, M. Li, W. Y. Leung, K.-M. Ho, and L. Dong, “Photonic-plasmonic integration through the fusion of photonic crystal cavity and metallic structure,” J. Nanophotonics5(1), 059501 (2011). [CrossRef]
  44. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457(7228), 455–458 (2009). [CrossRef] [PubMed]
  45. S. M. Kim, W. Zhang, and B. T. Cunningham, “Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy,” Opt. Express18(5), 4300–4309 (2010). [CrossRef] [PubMed]
  46. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett.10(3), 891–895 (2010). [CrossRef] [PubMed]
  47. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  48. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  49. C.-H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S.-W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011). [CrossRef] [PubMed]
  50. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett.8(8), 2321–2327 (2008). [CrossRef] [PubMed]
  51. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  52. M. Lipson, “Switching light on a silicon chip,” Opt. Mater.27(5), 731–739 (2005). [CrossRef]
  53. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  54. K. Djordjev, S.-J. Choi, S.-J. Choi, and R. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett.14(6), 828–830 (2002). [CrossRef]
  55. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol.23(4), 1800–1807 (2005). [CrossRef]
  56. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics Vol 42, E. Wolf, ed. (Elsevier, 2001), pp. 219–276.
  57. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974). [CrossRef]
  58. G. D'Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A77(4), 043825 (2008). [CrossRef]
  59. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010). [CrossRef] [PubMed]
  60. J. A. Stratton, Electromagnetic Theory (Wiley, 2007).
  61. J.-L. Thomas and R. Marchiano, “Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices,” Phys. Rev. Lett.91(24), 244302 (2003). [CrossRef] [PubMed]
  62. B. Yan, S. V. Boriskina, and B. M. Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C Nanomater. Interfaces115(11), 4578–4583 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (143 KB)      QuickTime
» Media 2: MOV (334 KB)      QuickTime
» Media 3: MOV (1869 KB)      QuickTime
» Media 4: MOV (877 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited