OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22316–22321

GHz optomechanical resonators with high mechanical Q factor in air

Xiankai Sun, King Y. Fong, Chi Xiong, Wolfram H. P. Pernice, and Hong X. Tang  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22316-22321 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate wheel-shaped silicon optomechanical resonators for resonant operation in ambient air. The high finesse of optical whispering gallery modes (loaded optical Q factor above 500,000) allows for efficient transduction of the wheel resonator’s mechanical radial contour modes of frequency up to 1.35 GHz with high mechanical Q factor around 4,000 in air.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:

Original Manuscript: July 1, 2011
Revised Manuscript: August 27, 2011
Manuscript Accepted: September 12, 2011
Published: October 24, 2011

Virtual Issues
Collective Phenomena (2011) Optics Express

Xiankai Sun, King Y. Fong, Chi Xiong, Wolfram H. P. Pernice, and Hong X. Tang, "GHz optomechanical resonators with high mechanical Q factor in air," Opt. Express 19, 22316-22321 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009). [CrossRef] [PubMed]
  2. K. Srinivasan, H. X. Miao, M. T. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11(2), 791–797 (2011). [CrossRef] [PubMed]
  3. S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express 19(10), 9020–9026 (2011). [CrossRef] [PubMed]
  4. M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008). [CrossRef]
  5. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4(4), 236–242 (2010). [CrossRef]
  6. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  7. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5(7), 485–488 (2009). [CrossRef]
  8. M. Li, W. H. P. Pernice, and H. X. Tang, “Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities,” Appl. Phys. Lett. 97(18), 183110 (2010). [CrossRef]
  9. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]
  10. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “Wavelength-sized GaAs optomechanical resonators with gigahertz frequency,” Appl. Phys. Lett. 98(11), 113108 (2011). [CrossRef]
  11. S. S. Li, Y. W. Lin, Y. Xie, Z. Y. Ren, and C. T. C. Nguyen, “Micromechanical “hollow-disk” ring resonators,” in Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (Maastricht, The Netherlands, 2004), pp. 821–824.
  12. G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2(10), 627–633 (2008). [CrossRef]
  13. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009). [CrossRef]
  14. G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19(3), 2782–2790 (2011). [CrossRef] [PubMed]
  15. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15(8), 4745–4752 (2007). [CrossRef] [PubMed]
  16. C. V. Stephenson, “Radial vibrations in short, hollow cylinders of barium titanate,” J. Acoust. Soc. Am. 28(1), 51–56 (1956). [CrossRef]
  17. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103(22), 223901 (2009). [CrossRef] [PubMed]
  18. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18(3), 2127–2136 (2010). [CrossRef] [PubMed]
  19. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007). [CrossRef] [PubMed]
  20. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99(9), 093902 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited