OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 22 — Oct. 24, 2011
  • pp: 22350–22357

Super-resolution imaging via spatiotemporal frequency shifting and coherent detection

Leonid Alekseyev, Evgenii Narimanov, and Jacob Khurgin  »View Author Affiliations

Optics Express, Vol. 19, Issue 22, pp. 22350-22357 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1896 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffraction limit is manifested in the loss of high spatial frequency information that results from decay of evanescent waves. As a result, conventional far-field optics yields no information about an object’s subwavelength features. Here we propose a novel approach to recovering evanescent waves in the far field, thereby enabling subwavelength-resolved imaging and spatial spectroscopy. Our approach relies on shifting the frequency and the wave vector of near-field components via scattering on acoustic phonons. This process effectively removes the spatial frequency cut-off for unambiguous far field detection. This technique can be adapted for digital holography, making it possible to perform phase-sensitive subwavelength imaging. We discuss the implementation of such a system in the mid-IR and THz bands, with possible extension to other spectral regions.

© 2011 OSA

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:

Original Manuscript: June 20, 2011
Revised Manuscript: October 11, 2011
Manuscript Accepted: October 17, 2011
Published: October 24, 2011

Virtual Issues
Vol. 6, Iss. 11 Virtual Journal for Biomedical Optics
Collective Phenomena (2011) Optics Express

Leonid Alekseyev, Evgenii Narimanov, and Jacob Khurgin, "Super-resolution imaging via spatiotemporal frequency shifting and coherent detection," Opt. Express 19, 22350-22357 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Testorf and M. A. Fiddy, “Superresolution Imaging Revisited,” Adv. Imag. Electron. Phys.163, 165–218 (2010). [CrossRef]
  2. W. Lukosz, “Optical Systems with Resolving Powers Exceeding the Classical Limit II,” J. Opt. Soc. A.57, 932 (1967). [CrossRef]
  3. Y. Kuznetsova, A. Neumann, and S. R. Brueck, “Imaging interferometric microscopy-approaching the linear systems limits of optical resolution.” Opt. Express15, 6651–63 (2007). [CrossRef] [PubMed]
  4. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Scie. U.S.A.102, 13,081–6 (2005).
  5. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, a. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express16(21), 17107–17118 (2008). [CrossRef] [PubMed]
  6. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B23, 2383–2392 (2006). [CrossRef]
  7. B. Dragnea, J. Preusser, J. M. Szarko, S. R. Leone, and W. D. J. Hinsberg, “Pattern characterization of deep-ultraviolet photoresists by near-field infrared microscopy,” J. Vac. Sci. Technol. B19, 142–152 (2001). [CrossRef]
  8. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399, 134–137 (1999). [CrossRef]
  9. N. C. J. van der Valk and P. C. M. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett.81, 1558–1560 (2002). [CrossRef]
  10. D. Mendlovic, A. W. Lohmann, N. Konforti, I. Kiryuschev, and Z. Zalevsky, “One-dimensional superresolution optical system for temporally restricted objects,” Appl. Opt.36, 2353–2359 (1997). [CrossRef] [PubMed]
  11. A. Shemer, D. Mendlovic, Z. Zalevsky, J. Garcia, and P. Garcia Martinez, “Superresolving optical system with time multiplexing and computer decoding,” Appl. Opt.38, 7245–7251 (1999). [CrossRef]
  12. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003), 2nd ed.
  13. A. Korpel, Acoustooptics (Marcel Dekker, New York, 1989).
  14. R. Lanz and P. Muralt, “Bandpass filters for 8 ghz using solidly mounted bulk acoustic wave resonators,” IEEE Trans. Ultrasonic. Ferroelec. Freq. Control52, 938 – 948 (2005). [CrossRef]
  15. M. B. Assouar, O. Elmazria, P. Kirsch, P. Alnot, V. Mortet, and C. Tiusan, “High-frequency surface acoustic wave devices based on aln/diamond layered structure realized using e-beam lithography,” J. Appl. Phys.101, 114507 (2007). [CrossRef]
  16. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett.30, 75–77 (2005). [CrossRef] [PubMed]
  17. N. I. Zheludev, “What diffraction limit?” Nature Mat.7, 420–2 (2008). [CrossRef]
  18. Acoustooptic diffraction efficiency, and hence the signal-to-noise ratio varies as 1/q.
  19. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11, 77–79 (1967). [CrossRef]
  20. U. Schnars and W. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction,” Appl. Opt.33, 179181 (1994). [CrossRef]
  21. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms,” Appl. Opt.38, 6994–7001 (1999). [CrossRef]
  22. S. Alexandrov, T. Hillman, T. Gutzler, and D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett.97, 168,102 (2006). [CrossRef]
  23. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81, 3143 (2002). [CrossRef]
  24. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett.25, 716–718 (2000). [CrossRef]
  25. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22, 1268–1270 (1997). [CrossRef] [PubMed]
  26. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited