OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22410–22416

All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator

F. Li, M. Pelusi, D-X. Xu, R. Ma, S. Janz, B.J. Eggleton, and D.J. Moss  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22410-22416 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate all-optical wavelength conversion at 10 Gb/s for differential phase-shift keyed (DPSK) data signals in the C-band, based on four-wave mixing (FWM) in a silicon ring resonator. Error-free operation with a system penalty of ~4.1 dB at 10−9 BER is achieved.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.5990) Integrated optics : Semiconductors
(160.4330) Materials : Nonlinear optical materials
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Integrated Optics

Original Manuscript: August 23, 2011
Revised Manuscript: October 1, 2011
Manuscript Accepted: October 3, 2011
Published: October 24, 2011

F. Li, M. Pelusi, D-X. Xu, R. Ma, S. Janz, B.J. Eggleton, and D.J. Moss, "All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator," Opt. Express 19, 22410-22416 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Nature Photonics Workshop on the Future of Optical Communications; Tokyo, Japan, Oct. 2007. www.nature.com/nphoton/supplements/techconference2007
  2. B. Metcalfe, Toward Terabit Ethernet Plenary Talk, Optical Fiber Communications 2008, see www.ofcnfoec.org/conference_program/Plenary-video.aspx and www.lightreading.com/tv/tv_popup.asp?doc_id=146223
  3. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  4. B. J. Eggleton, D. J. Moss, and S. Radic, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools Ch. 20 (Academic Press, Oxford, 2008).
  5. H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010). [CrossRef] [PubMed]
  6. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]
  7. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996). [CrossRef]
  8. B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998). [CrossRef]
  9. D. Nesset, D. D. Marcenac, P. L. Mason, A. E. Kelly, S. Bouchoule, and E. Lach, “Simultaneous wavelength conversion of two 40 Gbit/s channels using four-wave mixing in a semiconductor optical amplifier,” Electron. Lett. 34(1), 107–108 (1998). [CrossRef]
  10. K. K. Chow, C. Shu, L. Chinlon, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” Photon. Technol. Lett. 17(3), 624–626 (2005). [CrossRef]
  11. M. R. E. Lamont, V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Choy, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide,” Electron. Lett. 43(17), 945 (2007). [CrossRef]
  12. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  13. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008). [CrossRef]
  14. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” Photon. Technol.Lett. 21(3), 182–184 (2009). [CrossRef]
  15. F. Li, M. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express 18(4), 3905–3910 (2010). [CrossRef] [PubMed]
  16. H. Ji, M. Pu, H. Hu, M. Galili, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppensen, “Optical Waveform Sampling and Error-Free Demultiplexing of 1.28 Tb/s Serial Data in a Nano engineered Silicon Waveguide,” J. Lightwave Technol. 29(4), 426–431 (2011). [CrossRef]
  17. M. D. Pelusi, F. Luan, S. J. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” Photon. Technol. Lett. 22(1), 3–5 (2010). [CrossRef]
  18. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006). [CrossRef] [PubMed]
  19. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef] [PubMed]
  20. D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat Commun 1(8), 116 (2010). [CrossRef] [PubMed]
  21. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  22. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009). [CrossRef] [PubMed]
  23. A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18(8), 7634–7641 (2010). [CrossRef] [PubMed]
  24. M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” Opt. Express 18(8), 7625–7633 (2010). [CrossRef] [PubMed]
  25. A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(9), 618–623 (2011). [CrossRef]
  26. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25(8), 554–556 (2000). [CrossRef] [PubMed]
  27. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008). [CrossRef] [PubMed]
  28. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]
  29. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010). [CrossRef]
  30. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]
  31. A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010). [CrossRef] [PubMed]
  32. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat Commun 2, 296 (2011). [CrossRef] [PubMed]
  33. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 3 Fig. 2
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited