OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22455–22461

Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems

Maurizio Magarini, Arnaldo Spalvieri, Francesco Vacondio, Marco Bertolini, Marianna Pepe, and Giancarlo Gavioli  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22455-22461 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An empirical phase noise channel model suitable for performance evaluation of high spectrally efficient modulations in 100G long-haul coherent optical transmission systems using polarization-division multiplexed and wavelength-division multiplexing channels is presented. The derivation of the model is worked out by exploiting the similarity between the power spectral density of the carrier extracted from the analysis of propagation measurements and the Lorentzian spectrum that is usually adopted to describe instabilities of semiconductor lasers. The proposed channel model is characterized by only two parameters: the linewidth of the carrier and the signal-to-noise ratio. We show that in the case of quadrature phase-shift keying transmission a good agreement exists between quantitative measures of performance extracted by processing experimental data and those obtained from simulations based on the use of the empirical model.

© 2011 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.4510) Fiber optics and optical communications : Optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 20, 2011
Revised Manuscript: September 9, 2011
Manuscript Accepted: September 16, 2011
Published: October 24, 2011

Maurizio Magarini, Arnaldo Spalvieri, Francesco Vacondio, Marco Bertolini, Marianna Pepe, and Giancarlo Gavioli, "Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems," Opt. Express 19, 22455-22461 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2120 . [CrossRef] [PubMed]
  2. I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009). [CrossRef]
  3. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010). [CrossRef]
  4. C. Herzet, N. Noels, V. Lottici, H. Wymeersch, M. Luise, M. Moeneclaey, and L. Vandendorpe, “Code-aided turbo synchronization,” Proc. IEEE 95(6), 1255–1271 (2007). [CrossRef]
  5. A. Barbieri, G. Colavolpe, and G. Caire, “Joint Iterative Detection and Decoding in the Presence of Phase Noise and Frequency Offset,” IEEE Trans. Commun. 55(1), 171–179 (2007). [CrossRef]
  6. R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwave Technol. 4(11), 1711–1716 (1986). [CrossRef]
  7. G. J. Foschini and G. Vannucci, “Characterizing filtered light waves corrupted by phase noise,” IEEE Trans. Inf. Theory 34(6), 1437–1448 (1988). [CrossRef]
  8. K. P. Ho, Phase-Modulated Optical Communication Systems, (Springer-Verlag, New York, NY, 2005).
  9. A. P. T. Lau and J. M. Kahn, “Signal design and detection in presence of non-linear phase noise,” J. Lightwave Technol. 25(10), 3008–3016 (2007). [CrossRef]
  10. A. Bononi, N. Rossi, and P. Serena, “Transmission limitations due to fiber nonlinearity,” in Optical Fiber Communication Conference and Exposition, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO7.
  11. Z. Tao, W. Yan, L. Liu, L. Li, S. Oda, T. Hoshida, and J. C. Rasmussen, “Simple fiber model for determination of XPM effects,” J. Lightwave Technol. 29(7), 974–986 (2011). [CrossRef]
  12. M. Murakami and S. Saito, “Evolution of field spectrum due to fiber-nonlinearity-induced phase noise in in-line optical amplifier systems,” IEEE Photon. Technol. Lett. 4(11), 1269–1272 (1992). [CrossRef]
  13. Z. Tao, L. Li, L. Liu, W. Yan, H. Nakashima, T. Tanimura, S. Oda, T. Hoshida, and J. C. Rasmussen, “Improvements to digital carrier phase recovery algorithm for high-performance optical coherent receivers,” IEEE J. Select. Top. Quantum Electron. 16(5), 1201–1209 (2010). [CrossRef]
  14. A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscillators: a unifying theory and numerical methods for characterization,” IEEE Trans. Circuits Syst., I Fundam. Theory Appl. 47, 655–674 (2000).
  15. J.-C. Antona, M. Lefrançois, S. Bigo, and G. Le Meur, “Investigation of advanced dispersion management techniques for ultra-long haul transmissions,” in Proceedings of European Conference on Optical Communications, Glasgow, Scotland, 2005, Mo.3.2.6.
  16. M. Salsi, C. Koebele, P. Tran, H. Mardoyan, E. Dutisseuil, J. Renaudier, M. Bigot-Astruc, L. Provost, S. Richard, P. Sillard, S. Bigo, and G. Charlet, “Transmission of 96×100Gb/s with 23% Super-FEC Overhead over 11,680km, using Optical Spectral Engineering,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMR2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OMR2
  17. T. Mizuochi, Y. Miyata, K. Kubo, T. Sugihara, K. Onohara, and H. Yoshida, “Progress in soft-decision FEC,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper NWC2. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2011-NWC2
  18. U. Mengali and A. N. D'Andrea, Synchronization Techniques for Digital Receivers, (Plenum Press, New York, NY, 1997).
  19. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited