OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22510–22514

Megawatt level UV output from [110] Cr4+:YAG passively Q-switched microchip laser

Rakesh Bhandari and Takunori Taira  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22510-22514 (2011)
http://dx.doi.org/10.1364/OE.19.022510


View Full Text Article

Enhanced HTML    Acrobat PDF (906 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent development of megawatt peak power, giant pulse microchip lasers has opened new opportunities for efficient wavelength conversion, provided the output of the microchip laser is linearly polarized. We obtain > 2 MW peak power, 260 ps, 100 Hz pulses at 266 nm by fourth harmonic conversion of a linearly polarized Nd:YAG microchip laser that is passively Q-switched with [110] cut Cr4+:YAG. The SHG and FHG conversion efficiencies are 85% and 51%, respectively.

© 2011 OSA

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Lasers, Mode Locking and Parametric Oscillation

History
Original Manuscript: August 31, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: September 29, 2011
Published: October 25, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

Citation
Rakesh Bhandari and Takunori Taira, "Megawatt level UV output from [110] Cr4+:YAG passively Q-switched microchip laser," Opt. Express 19, 22510-22514 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999). [CrossRef]
  2. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001). [CrossRef]
  3. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express16(24), 19891–19899 (2008). [CrossRef] [PubMed]
  4. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt.48(15), 2899–2902 (2009). [CrossRef] [PubMed]
  5. T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron.30(3), 800–804 (1994). [CrossRef]
  6. T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers,” Appl. Opt.34(21), 4298–4301 (1995). [CrossRef] [PubMed]
  7. J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D.C., 1999), pp. 178–186.
  8. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010). [CrossRef]
  9. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011). [CrossRef] [PubMed]
  10. OSA News Release, http://www.osa.org/about_osa/newsroom/news_releases/releases/04.2011/lasersparksrevolution.aspx .
  11. H. Sakai, A. Sone, H. Kan, and T. Taira, “Polarization stabilizing for diode-pumped passively Q-switched Nd:YAG microchip lasers,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper MD2.
  12. R. Bhandari and T. Taira, “> 6 MW output power at 532 nm from passively Q-switched Nd:YAG/ Cr4+:YAG microchip laser,” Opt. Express19(20), 19135–19141 (2011). [CrossRef]
  13. S.-C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: Second-harmonic generation with depletion and diffraction,” Phys. Rev. A21(2), 599–606 (1980). [CrossRef]
  14. M. Takahashi, A. Osada, A. Dergachev, P. F. Moulton, M. Cadatal-Raduban, T. Shimizu, and N. Sarukura, “Effects of pulse rate and temperature on nonlinear absorption of pulsed 262-nm laser light in β-BaB2O4,” Jpn. J. Appl. Phys.49(8), 080211 (2010). [CrossRef]
  15. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron.32(8), 1324–1333 (1996). [CrossRef]
  16. A. Dubietis, G. Tamošauskas, A. Varanavičius, and G. Valiulis, “Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm,” Appl. Opt.39(15), 2437–2440 (2000). [CrossRef] [PubMed]
  17. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [invited],” Opt. Mater. Express1(5), 1040–1050 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited