OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22550–22556

Control of magnetic dipole terahertz radiation by cavity-based phase modulation

J. Li, T. Higuchi, N. Kanda, K. Konishi, S. G. Tikhodeev, and M. Kuwata-Gonokami  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22550-22556 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although it is well accepted that the ultrafast manipulation of spins or magnetization in solid promises potential applications in coherent terahertz (THz) radiation source, spintronics and quantum information processing, their performance is significantly limited by the weak coupling between radiation field and magnetic dipole oscillation. For such ‘weak’ magnetic system, we propose an effective and simple route based on the cavity-based phase modulation technique towards the efficient energy extraction, demonstrated via controlling the magnetic dipole THz radiation generated in the nonlinear Raman process from antiferromagnetic (AFM) NiO. An asymmetric coupled Fabry-Pérot (FP) cavity is constituted by simply placing a metallic planar mirror in the vicinity of a NiO slab. The energy-extraction (THz radiation) can be effectively manipulated by changing the NiO-mirror distance to modulate the phase relation between the magnetic wave and the induced magnetization in NiO. The distinct radiation control can be observed and the experiments are well explained by numerically analyzing the radiation dynamics that highlights the role of phase modulation during the radiation process.

© 2011 OSA

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.5430) Physical optics : Polarization
(140.3948) Lasers and laser optics : Microcavity devices
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Terahertz Generation

Original Manuscript: September 6, 2011
Manuscript Accepted: October 5, 2011
Published: October 25, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

J. Li, T. Higuchi, N. Kanda, K. Konishi, S. G. Tikhodeev, and M. Kuwata-Gonokami, "Control of magnetic dipole terahertz radiation by cavity-based phase modulation," Opt. Express 19, 22550-22556 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005). [CrossRef] [PubMed]
  2. F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Nonthermal ultrafast optical control of the magnetization in garnet films,” Phys. Rev. B 73(1), 014421 (2006). [CrossRef]
  3. J.-Y. Bigot, M. Vomir, and E. Beaurepaire, “Coherent ultrafast magnetism induced by femtosecond laser pulses,” Nat. Phys. 5(7), 515–520 (2009). [CrossRef]
  4. N. P. Duong, T. Satoh, and M. Fiebig, “Ultrafast manipulation of antiferromagnetism of NiO,” Phys. Rev. Lett. 93(11), 117402 (2004). [CrossRef] [PubMed]
  5. J. B. Héroux, Y. Ino, M. Kuwata-Gonokami, Y. Hashimoto, and S. Katsumoto, “Terahertz radiation emission from GaMnAs,” Appl. Phys. Lett. 88(22), 221110 (2006). [CrossRef]
  6. T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011). [CrossRef] [PubMed]
  7. J. Nishitani, K. Kozuki, T. Nagashima, and M. Hangyo, “Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses,” Appl. Phys. Lett. 96(22), 221906 (2010). [CrossRef]
  8. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011). [CrossRef]
  9. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011). [CrossRef] [PubMed]
  10. K. Cho, Reconstruction of Macroscopic Maxwell Equations: A Single Susceptibility Theory (Springer, 2010).
  11. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).
  12. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  13. J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26(2), 60–61 (1975). [CrossRef]
  14. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]
  15. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003). [CrossRef] [PubMed]
  16. S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]
  17. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006). [CrossRef] [PubMed]
  18. H. Shirai, E. Kishimoto, T. Kokuhata, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, M. Hangyo, T. G. Kim, and N. Tsurumachi, “Enhancement and suppression of terahertz emission by a Fabry-Perot cavity structure with a nonlinear optical crystal,” Appl. Opt. 48(36), 6934–6939 (2009). [CrossRef] [PubMed]
  19. Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996). [CrossRef]
  20. M. T. Hutchings and E. J. Samuelsen, “Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties,” Phys. Rev. B 6(9), 3447–3461 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited