OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22557–22562

Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22557-22562 (2011)
http://dx.doi.org/10.1364/OE.19.022557


View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2.2 – 4.5 μm range when pumping at λ1 = 1.2 – 1.8 μm. The exact phase-matching point depends on the soliton wavelength, and we show that a simple longpass filter can separate the Cherenkov waves from the solitons. The Cherenkov waves are born few-cycle with an excellent Gaussian pulse shape, and the conversion efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses.

© 2011 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Frequency Conversion, Combs and Nonlinear Waveguides

History
Original Manuscript: September 6, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: October 5, 2011
Published: October 25, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

Citation
M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, "Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses," Opt. Express 19, 22557-22562 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22557


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett.7, 118–119 (1961). [CrossRef]
  2. L. A. Ostrovskii, “Self-action of light in crystals,” Pisma Zh. Eksp. Teor. Fiz.5, 331 (1967) [JETP Lett. 5, 272–275 (1967)].
  3. J. M. R. Thomas and J. P. E. Taran, “Pulse distortions in mismatched second harmonic generation,” Opt. Comm.4, 329–334 (1972). [CrossRef]
  4. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron.28, 1691–1740 (1996). [CrossRef]
  5. A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep.370, 63–235 (2002). [CrossRef]
  6. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quantum Semiclassical Opt.7, R53–R72 (2005). [CrossRef]
  7. X. Liu, L. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett.24, 1777–1779 (1999). [CrossRef]
  8. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002). [CrossRef]
  9. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett.31, 1881–1883 (2006). [CrossRef] [PubMed]
  10. B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Few-cycle solitons in short strongly phase-mismatched frequency conversion crystals,” submitted, arXiv:1109.4261 (2011).
  11. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett.32, 2478–2480 (2007). [CrossRef] [PubMed]
  12. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices” J. Lightwave Technol.24, 2579–2592 (2006). [CrossRef]
  13. M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express16, 3273–3287 (2008). [CrossRef] [PubMed]
  14. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A82, 063806 (2010). [CrossRef]
  15. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett.11, 464–466 (1986). [CrossRef] [PubMed]
  16. F. W. Wise, I. A. Walmsley, and C. L. Tang, “Simultaneous formation of solitons and dispersive waves in a femtosecond ring dye laser,” Opt. Lett.13, 129–131 (1988). [CrossRef] [PubMed]
  17. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electr.23, 1938–1946 (1987). [CrossRef]
  18. A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, “Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers,” Opt. Lett.13, 770–772 (1988). [CrossRef] [PubMed]
  19. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995). [CrossRef] [PubMed]
  20. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87, 203901 (2001). [CrossRef] [PubMed]
  21. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys.82, 1287–1299 (2010). [CrossRef]
  22. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4, 33–36 (2010). [CrossRef]
  23. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett.35, 2361–2363 (2010). [CrossRef] [PubMed]
  24. S.-J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs,” Opt. Express18, 5367–5374 (2010). [CrossRef] [PubMed]
  25. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106, 203901 (2011). [CrossRef] [PubMed]
  26. C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett.78, 4749–4752 (1997). [CrossRef]
  27. P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett.87, 183902 (2001).
  28. J. F. Corney and O. Bang, “Solitons in quadratic nonlinear photonic crystals,” Phys. Rev. E64, 047601 (2001). [CrossRef]
  29. M. Bache, J. Moses, and F. W. Wise, “Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities,” J. Opt. Soc. Am. B24, 2752–2762 (2007). [CrossRef]
  30. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett.32, 2490–2492 (2007). [CrossRef] [PubMed]
  31. J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett.97, 073903 (2006). See also arXiv:physics/0604170. [CrossRef] [PubMed]
  32. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997). [CrossRef]
  33. M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: Compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A81, 053815 (2010). [CrossRef]
  34. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91, 343–348 (2008). [CrossRef]
  35. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1, 653–657 (2007). [CrossRef]
  36. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron.QE-23, 510–524 (1987). [CrossRef]
  37. J. C. Travers, P. Hölzer, W. Chang, J. Nold, A. Nazarkin, N. Joly, and P. S. Russell, “Phase-matching and gain of deep-UV dispersive-wave generation,” in CLEO/Europe and EQEC 2011 Conference Digest, (Optical Society of America, 2011), p. CJ3.1.
  38. J.-P. Likforman, M. Mehendale, D. M. Villeneuve, M. Joffre, and P. B. Corkum, “Conversion of high-power 15-fs visible pulses to the mid infrared,” Opt. Lett.26, 99–101 (2001). [CrossRef]
  39. D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett.33, 2901–2903 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited