OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22563–22574

Electric field-induced coherent control in GaAs: polarization dependence and electrical measurement [Invited]

J. K. Wahlstrand, H. Zhang, S. B. Choi, J. E. Sipe, and S. T. Cundiff  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22563-22574 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A static electric field enables coherent control of the photoexcited carrier density in a semiconductor through the interference of one- and two-photon absorption. An experiment using optical detection is described. The polarization dependence of the signal is consistent with a calculation using a 14-band k · p model for GaAs. We also describe an electrical measurement. A strong enhancement of the phase-dependent photocurrent through a metal-semiconductor-metal structure is observed when a bias of a few volts is applied. The dependence of the signal on bias and laser spot position is studied. The field-induced enhancement of the signal could increase the sensitivity of semiconductor-based carrier-envelope phase detectors, useful in stabilizing mode-locked lasers for use in frequency combs.

© 2011 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Nonlinear Absorption and Dispersion

Original Manuscript: September 6, 2011
Manuscript Accepted: September 15, 2011
Published: October 25, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

J. K. Wahlstrand, H. Zhang, S. B. Choi, J. E. Sipe, and S. T. Cundiff, "Electric field-induced coherent control in GaAs: polarization dependence and electrical measurement [Invited]," Opt. Express 19, 22563-22574 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett.74, 3596–3599 (1995). [CrossRef] [PubMed]
  2. R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett.76, 1703–1706 (1996). [CrossRef] [PubMed]
  3. A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett.78, 306–309 (1997). [CrossRef]
  4. L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys.3, 632–635 (2007). [CrossRef]
  5. Y. Kerachian, P. A. Marsden, H. M. van Driel, and A. L. Smirl, “Dynamics of charge current gratings generated in GaAs by ultrafast quantum interference control,” Phys. Rev. B75, 125205 (2007). [CrossRef]
  6. H. Zhao, E. J. Loren, A. L. Smirl, and H. M. van Driel, “Dynamics of charge currents ballistically injected in GaAs by quantum interference,” J. Appl. Phys.103, 053510 (2008). [CrossRef]
  7. M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett.90, 136603 (2003). [CrossRef] [PubMed]
  8. T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors,” Phys. Rev. Lett.92, 147403 (2004). [CrossRef] [PubMed]
  9. P. Roos, X. Li, J. Pipis, and S. Cundiff, “Solid-state carrier-envelope-phase noise measurements with intrinsically balanced detection,” Opt. Express12, 4255–4260 (2004). [CrossRef] [PubMed]
  10. P. A. Roos, X. Li, R. P. Smith, J. A. Pipis, T. M. Fortier, and S. T. Cundiff, “Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents,” Opt. Lett.30, 735–737 (2005). [CrossRef] [PubMed]
  11. R. P. Smith, P. A. Roos, J. K. Wahlstrand, J. A. Pipis, M. B. Rivas, and S. T. Cundiff, “Optical frequency metrology of an iodine-stabilized He-Ne laser using the frequency comb of a quantum-interference-stabilized mode-locked laser,” J. Res. Natl. Inst. Stand. Technol.112, 289–296 (2007).
  12. J. K. Wahlstrand, H. Zhang, S. B. Choi, S. Kannan, D. S. Dessau, J. E. Sipe, and S. T. Cundiff, “Optical coherent control induced by an electric field in a semiconductor: a new manifestation of the Franz-Keldysh effect,” Phys. Rev. Lett.106, 247404 (2011). [CrossRef] [PubMed]
  13. J. M. Fraser, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, “Quantum interference in electron-hole generation in noncentrosymmetric semiconductors,” Phys. Rev. Lett.83, 4192–4195 (1999). [CrossRef]
  14. R. D. R. Bhat and J. E. Sipe, “Calculations of two-color interband optical injection and control of carrier population, spin, current, and spin current in bulk semiconductors,” arXiv:cond-mat/0601277 (unpublished).
  15. J. K. Wahlstrand, J. A. Pipis, P. A. Roos, S. T. Cundiff, and R. P. Smith, “Electrical measurement of carrier population modulation by two-color coherent control,” Appl. Phys. Lett.89, 241115 (2006). [CrossRef]
  16. J. K. Wahlstrand and J. E. Sipe, “Independent-particle theory of the Franz-Keldysh effect including interband coupling: Application to calculation of electroabsorption in GaAs,” Phys. Rev. B82, 075206 (2010). [CrossRef]
  17. D. E. Aspnes, “Electric field effects on the dielectric constant of solids,” Phys. Rev.153, 972–982 (1967). [CrossRef]
  18. P. Pfeffer and W. Zawadzki, “Five-level k · p model for the conduction and valence bands of GaAs and InP,” Phys. Rev. B53, 12813–12828 (1996). [CrossRef]
  19. J. K. Wahlstrand, S. T. Cundiff, and J. E. Sipe, “Polarization dependence of the two-photon Franz-Keldysh effect,” Phys. Rev. B83, 233201 (2011). [CrossRef]
  20. M. J. Stevens, R. D. R. Bhat, X. Y. Pan, H. M. van Driel, J. E. Sipe, and A. L. Smirl, “Enhanced coherent control of carrier and spin density in a zinc-blende semiconductor by cascaded second-harmonic generation,” J. Appl. Phys.97, 093709 (2005). [CrossRef]
  21. C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett.18, 167–170 (1967). [CrossRef]
  22. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard, and W. Wiegmann, “Room-temperature optical nonlinearities in GaAs,” Phys. Rev. Lett.57, 2446 (1986). [CrossRef] [PubMed]
  23. J. M. Fraser and H. M. van Driel, “Quantum interference control of free-carrier density in GaAs,” Phys. Rev. B68, 085208 (2003). [CrossRef]
  24. M. J. Stevens, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Coherent control of carrier population and spin in (111)-GaAs,” Phys. Status Solidi B238, 568–574 (2003). [CrossRef]
  25. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett.59, 1972–1974 (1991). [CrossRef]
  26. J. K. Wahlstrand, H. Zhang, and S. T. Cundiff, “Uniform-field transverse electroreflectance using a mode-locked laser and a radio-frequency bias,” Appl. Phys. Lett.96, 101104 (2010). [CrossRef]
  27. R. L. Snider, J. K. Wahlstrand, H. Zhang, R. P. Mirin, and S. T. Cundiff, “Quantum interference control of photocurrent injection in Er-doped GaAs,” Appl. Phys. B98, 333–336 (2010). [CrossRef]
  28. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpi-cosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett.59, 3276–3278 (1991). [CrossRef]
  29. M. Ruff, D. Streb, S. U. Dankowski, S. Tautz, P. Kiesel, B. Knupfer, M. Kneissl, N. Linder, G. H. Dohler, and U. D. Keil, “Polarization dependence of the electroabsorption in low-temperature grown GaAs for above band-gap energies,” Appl. Phys. Lett.68, 2968–2970 (1996). [CrossRef]
  30. A. Haché, J. Sipe, and H. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron.34, 1144–1154 (1998). [CrossRef]
  31. S. Gupta, S. Sethi, and P. K. Bhattacharya, “Picosecond carrier lifetime in erbium-doped-GaAs,” Appl. Phys. Lett.62, 1128–1130 (1993). [CrossRef]
  32. N. Laman, A. I. Shkrebtii, J. E. Sipe, and H. M. van Driel, “Quantum interference control of currents in CdSe with a single optical beam,” Appl. Phys. Lett.75, 2581–2583 (1999). [CrossRef]
  33. P. A. Roos, X. Li, J. A. Pipis, T. M. Fortier, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Characterization of carrier-envelope phase-sensitive photocurrent injection in a semiconductor,” J. Opt. Soc. Am. B22, 362–368 (2005). [CrossRef]
  34. P. Roos, Q. Quraishi, S. Cundiff, R. Bhat, and J. Sipe, “Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements,” Opt. Express11, 2081–2090 (2003). [CrossRef] [PubMed]
  35. R. D. R. Bhat and J. E. Sipe, “Excitonic effects on the two-color coherent control of interband transitions in bulk semiconductors,” Phys. Rev. B72, 075205 (2005). [CrossRef]
  36. C. Sames, J. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B79, 045208 (2009). [CrossRef]
  37. D. S. Kim and D. S. Citrin, “Efficient terahertz generation using trap-enhanced fields in semi-insulating photo-conductors by spatially broadened excitation,” J. Appl. Phys.101, 053105 (2007). [CrossRef]
  38. H. Shen and M. Dutta, “Franz–Keldysh oscillations in modulation spectroscopy,” J. Appl. Phys.78, 2151–2176 (1995). [CrossRef]
  39. H. Dember, “Über eine photoelektronische Kraft in Kupferoxydul-Kristallen,” Z. Phys.32, 554 (1931).
  40. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18, 4939–4947 (2010). [CrossRef] [PubMed]
  41. J. Werner, K. Ploog, and H. J. Queisser, “Interface-state measurements at Schottky contacts: a new admittance technique,” Phys. Rev. Lett.57, 1080–1083 (1986). [CrossRef] [PubMed]
  42. J. H. Kim, A. Polley, and S. E. Ralph, “Efficient photoconductive terahertz source using line excitation,” Opt. Lett.30, 2490–2492 (2005). [CrossRef] [PubMed]
  43. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device,” Opt. Lett.31, 1546–1548 (2006). [CrossRef] [PubMed]
  44. H. Zhang, J. K. Wahlstrand, S. B. Choi, and S. T. Cundiff, “Contactless photoconductive terahertz generation,” Opt. Lett.36, 223–225 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited