OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22659–22668

Autofocusing method using fluorescence detection for precise two-photon nanofabrication

Byung Je Jung, Hong Jin Kong, Byoung Goo Jeon, Dong-Yol Yang, Yong Son, and Kwang-Sup Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22659-22668 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a method capable of focusing a laser beam on a substrate automatically via fluorescence detection from the resin of a two-photon nanofabrication system. When two-photon absorption (TPA) occurs by focusing the laser beam in the resin, fluorescence is emitted from the focusing region in the visible range. The total pixel number above the threshold value of the fluorescence images obtained by a CCD camera is plotted on a graph in accordance with the focus position. By searching for the position when the total pixel number undergoes an abrupt change in the pre-TPA region, the correct configuration of the focused laser beam can be found. Through focusing tests conducted at four vertices of a 500 μm x 500 μm square placed arbitrarily inside SCR500 resin, the errors of the autofocusing method were found to range from −100 nm to + 200 nm. Moreover, this method does not leave any polymerized marks. To verify the usefulness of the autofocusing method, the fabrication of a pyramid structure consisting of 20 layers was attempted on a coverglass. It was completely fabricated without losing a layer.

© 2011 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: September 8, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 21, 2011
Published: October 26, 2011

Byung Je Jung, Hong Jin Kong, Byoung Goo Jeon, Dong-Yol Yang, Yong Son, and Kwang-Sup Lee, "Autofocusing method using fluorescence detection for precise two-photon nanofabrication," Opt. Express 19, 22659-22668 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” Proc. SPIE 1674, 776–782 (1992). [CrossRef]
  2. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997). [CrossRef] [PubMed]
  3. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001). [CrossRef] [PubMed]
  4. H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003). [CrossRef]
  5. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003). [CrossRef] [PubMed]
  6. D.-Y. Yang, S. H. Park, T. W. Lim, H. J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007). [CrossRef]
  7. H. J. Kong, S. W. Yi, D.-Y. Yang, and K.-S. Lee, “Ultrafast laser-induced two-photon photopolymerization of SU-8 high-aspect-ratio structures and nanowire,” J. Korean Phys. Soc. 54(1), 215–219 (2009). [CrossRef]
  8. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010). [CrossRef] [PubMed]
  9. J. Hesse, M. Sonnleitner, A. Sonnleitner, G. Freudenthaler, J. Jacak, O. Höglinger, H. Schindler, and G. J. Schütz, “Single-molecule reader for high-throughput bioanalysis,” Anal. Chem. 76(19), 5960–5964 (2004). [CrossRef] [PubMed]
  10. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008). [CrossRef]
  11. J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010). [CrossRef] [PubMed]
  12. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 457–460 (2006). [CrossRef]
  13. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011). [CrossRef] [PubMed]
  14. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited